Quantisations of exactly solvable ghostly models
- URL: http://arxiv.org/abs/2503.21447v1
- Date: Thu, 27 Mar 2025 12:39:52 GMT
- Title: Quantisations of exactly solvable ghostly models
- Authors: Andreas Fring, Takano Taira, Bethan Turner,
- Abstract summary: We investigate an exactly solvable two-dimensional Lorentzian coupled quantum system.<n>We map it onto the standard Pais-Uhlenbeck formulation.<n>We report several specific physical properties of the ghost model investigated.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate an exactly solvable two-dimensional Lorentzian coupled quantum system that in a certain parameter regime can be transformed to a higher time derivative theory (HTDT) with preserved symplectic structure. By transforming the system's Lagrangian, we explicitly map it onto the standard Pais-Uhlenbeck formulation, revealing a direct correspondence in their dynamical and Poisson bracket structures. We quantise the model in two alternative ways. First we derive the eigensystem of the Hamiltonian by solving the Schr\"odinger equation through an Ansatz that leads to a set of coupled three-term recurrence relations, that we solve exactly, identifying normalisable wavefunctions and their associated energy spectra. We compare our results with a Fock space construction, finding exact agreement. On the basis of the exact solutions we report several specific physical properties of the ghost model investigated with a focus on the localisation properties of the system.
Related papers
- Exploring entanglement in finite-size quantum systems with degenerate ground state [0.0]
We develop an approach for characterizing non-local quantum correlations in spin systems with exactly or nearly degenerate ground states.
Estimating the von Neumann entropy of the random wave functions helps to reveal previously unknown features of the quantum correlations in the phases with degeneracy of the ground state.
Digital quantum simulations performed with quantum computers can provide accurate description of the entanglement of the degenerate systems even in the presence of noise.
arXiv Detail & Related papers (2024-10-01T08:56:34Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - An Accurate Pentadiagonal Matrix Solution for the Time-Dependent
Schr\"{o}dinger Equation [2.480301925841752]
We invoke the highly accurate five-point stencil to discretize the wave function onto an Implicit-Explicit pentadiagonal Crank-Nicolson scheme.
It is demonstrated that the resultant solutions are significantly more accurate than the standard ones.
arXiv Detail & Related papers (2022-05-26T16:16:56Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Two dimensional non-Hermitian harmonic oscillator: coherent states [0.0]
The corresponding time independent Schr"odinger equation yields real eigenvalues with complex eigenfunctions.
We construct the coherent state of the system by using a superposition of 12 eigenfunctions.
arXiv Detail & Related papers (2020-12-08T16:16:04Z) - Alternative quantisation condition for wavepacket dynamics in a
hyperbolic double well [0.0]
We propose an analytical approach for computing the eigenspectrum and corresponding eigenstates of a hyperbolic double well potential of arbitrary height or width.
Considering initial wave packets of different widths and peak locations, we compute autocorrelation functions and quasiprobability distributions.
arXiv Detail & Related papers (2020-09-18T10:29:04Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.