CombiGCN: An effective GCN model for Recommender System
- URL: http://arxiv.org/abs/2503.21471v1
- Date: Thu, 27 Mar 2025 13:03:27 GMT
- Title: CombiGCN: An effective GCN model for Recommender System
- Authors: Loc Tan Nguyen, Tin T. Tran,
- Abstract summary: Graph Neural Networks (GNNs) have opened up a potential line of research for collaborative filtering (CF)<n>We propose a recommendation framework, CombiGCN, in which item embeddings are only linearly propagated on the user-item interaction graph.<n>We also conducted experiments comparing CombiGCN with several state-of-the-art models on three real-world datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) have opened up a potential line of research for collaborative filtering (CF). The key power of GNNs is based on injecting collaborative signal into user and item embeddings which will contain information about user-item interactions after that. However, there are still some unsatisfactory points for a CF model that GNNs could have done better. The way in which the collaborative signal are extracted through an implicit feedback matrix that is essentially built on top of the message-passing architecture of GNNs, and it only helps to update the embedding based on the value of the items (or users) embeddings neighboring. By identifying the similarity weight of users through their interaction history, a key concept of CF, we endeavor to build a user-user weighted connection graph based on their similarity weight. In this study, we propose a recommendation framework, CombiGCN, in which item embeddings are only linearly propagated on the user-item interaction graph, while user embeddings are propagated simultaneously on both the user-user weighted connection graph and user-item interaction graph graphs with Light Graph Convolution (LGC) and combined in a simpler method by using the weighted sum of the embeddings for each layer. We also conducted experiments comparing CombiGCN with several state-of-the-art models on three real-world datasets.
Related papers
- Improvement Graph Convolution Collaborative Filtering with Weighted addition input [0.0]
We build a model WiGCN (Weighted input GCN) to describe and experiment on well-known datasets.<n>Conclusions will be stated after comparing our results with state-of-the-art such as GCMC, NGCF and LightGCN.
arXiv Detail & Related papers (2025-03-27T12:57:33Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - GNN4FR: A Lossless GNN-based Federated Recommendation Framework [13.672867761388675]
Graph neural networks (GNNs) have gained wide popularity in recommender systems.
Our framework achieves full-graph training with complete high-order structure information.
In addition, we use LightGCN to instantiate an example of our framework and show its equivalence.
arXiv Detail & Related papers (2023-07-25T16:55:17Z) - Graph Collaborative Signals Denoising and Augmentation for
Recommendation [75.25320844036574]
We propose a new graph adjacency matrix that incorporates user-user and item-item correlations.
We show that the inclusion of user-user and item-item correlations can improve recommendations for users with both abundant and insufficient interactions.
arXiv Detail & Related papers (2023-04-06T19:43:37Z) - IA-GCN: Interactive Graph Convolutional Network for Recommendation [13.207235494649343]
Graph Convolutional Network (GCN) has become a novel state-of-the-art for Collaborative Filtering (CF) based Recommender Systems (RS)
We build bilateral interactive guidance between each user-item pair and propose a new model named IA-GCN (short for InterActive GCN)
Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion.
arXiv Detail & Related papers (2022-04-08T03:38:09Z) - Graph Convolutional Embeddings for Recommender Systems [67.5973695167534]
We propose a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
arXiv Detail & Related papers (2021-03-05T10:46:16Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Graph Convolution Machine for Context-aware Recommender System [59.50474932860843]
We extend the advantages of graph convolutions to context-aware recommender system (CARS)
We propose textitGraph Convolution Machine (GCM), an end-to-end framework that consists of three components: an encoder, graph convolution layers, and a decoder.
We conduct experiments on three real-world datasets from Yelp and Amazon, validating the effectiveness of GCM and the benefits of performing graph convolutions for CARS.
arXiv Detail & Related papers (2020-01-30T15:32:08Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.