論文の概要: Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
- arxiv url: http://arxiv.org/abs/2503.21489v1
- Date: Thu, 27 Mar 2025 13:25:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:27.511864
- Title: Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
- Title(参考訳): 縦断的医用画像の形状モデリング-拡散型メトリックマッピングから深層学習へ
- Authors: Edwin Tay, Nazli Tümer, Amir A. Zadpoor,
- Abstract要約: 生体組織は複雑なシステムであり、外的および内的刺激に反応して常に成長し、変化する。
解剖学的構造における自然および病理学的(または異常な)変化のモデリングと理解は、非常に関連性が高い。
しかし, 生体組織の縦方向の形状変化をモデル化することは, 本質的に非線形な性質のため, 非自明な作業である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Living biological tissue is a complex system, constantly growing and changing in response to external and internal stimuli. These processes lead to remarkable and intricate changes in shape. Modeling and understanding both natural and pathological (or abnormal) changes in the shape of anatomical structures is highly relevant, with applications in diagnostic, prognostic, and therapeutic healthcare. Nevertheless, modeling the longitudinal shape change of biological tissue is a non-trivial task due to its inherent nonlinear nature. In this review, we highlight several existing methodologies and tools for modeling longitudinal shape change (i.e., spatiotemporal shape modeling). These methods range from diffeomorphic metric mapping to deep-learning based approaches (e.g., autoencoders, generative networks, recurrent neural networks, etc.). We discuss the synergistic combinations of existing technologies and potential directions for future research, underscoring key deficiencies in the current research landscape.
- Abstract(参考訳): 生体組織は複雑なシステムであり、外的および内的刺激に反応して常に成長し、変化する。
これらのプロセスは、顕著で複雑な形状の変化をもたらす。
解剖学的構造の形態における自然および病理学的(または異常な)変化のモデリングと理解は、診断、予後、治療医療に非常に関係している。
それにもかかわらず、生体組織の縦方向の形状変化をモデル化することは、その固有の非線形性のために非自明な作業である。
本稿では,縦方向の形状変化(時空間形状のモデリング)をモデル化するための既存の手法とツールについて紹介する。
これらの手法は、微分同相距離マッピングからディープラーニングベースのアプローチ(オートエンコーダ、生成ネットワーク、リカレントニューラルネットワークなど)まで様々である。
我々は,既存の技術と今後の研究の方向性の相乗的組み合わせについて論じ,現在の研究環境における重要な欠陥を浮き彫りにしている。
関連論文リスト
- Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - Deep Medial Voxels: Learned Medial Axis Approximations for Anatomical Shape Modeling [5.584193645582203]
画像量からトポロジカルな骨格を忠実に近似する半単純表現であるディープ・メディアル・ボクセルを導入する。
再現技術は,可視化と計算機シミュレーションの両方の可能性を示している。
論文 参考訳(メタデータ) (2024-03-18T13:47:18Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
哺乳類網膜で観察される生体受容野を,深部核が効果的に複製していることを示す証拠を提示する。
生体受容の分野からインスピレーションを得る手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T18:06:22Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - Unsupervised Learning of Invariance Transformations [105.54048699217668]
近似グラフ自己同型を見つけるためのアルゴリズムフレームワークを開発する。
重み付きグラフにおける近似自己同型を見つけるために、このフレームワークをどのように利用できるかについて議論する。
論文 参考訳(メタデータ) (2023-07-24T17:03:28Z) - Deep Structural Causal Shape Models [21.591869329812283]
因果推論(Causal reasoning)は、重要な介入や反現実的な疑問を問う言語を提供する。
医用画像では,遺伝的要因,環境要因,ライフスタイル要因の因果効果について検討する。
形態的変動に関する因果推論を可能にするための計算ツールが不足している。
論文 参考訳(メタデータ) (2022-08-23T13:18:20Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
表現上の相似性を定量化する計量空間の族を提供する。
我々は、正準相関解析に基づいて既存の表現類似度尺度を修正し、三角形の不等式を満たす。
解剖学的特徴とモデル性能の観点から解釈可能な神経表現の関係を同定する。
論文 参考訳(メタデータ) (2021-10-27T19:48:55Z) - CS2-Net: Deep Learning Segmentation of Curvilinear Structures in Medical
Imaging [90.78899127463445]
カービリニア構造のセグメンテーションのための汎用的で統一的な畳み込みニューラルネットワークを提案する。
エンコーダとデコーダに自己アテンション機構を含む新しいカービリニア構造分割ネットワーク(CS2-Net)を導入する。
論文 参考訳(メタデータ) (2020-10-15T03:06:37Z) - Discriminative and Generative Models for Anatomical Shape Analysison
Point Clouds with Deep Neural Networks [3.7814216736076434]
与えられたタスクから低次元の形状表現を学習する解剖学的形状の解析のためのディープニューラルネットワークを導入する。
我々のフレームワークはモジュール構造であり、基本的な形状処理タスクを実行するいくつかの計算ブロックで構成されています。
本稿では, 疾患分類と年齢回帰の判別モデルと, 形状復元のための生成モデルを提案する。
論文 参考訳(メタデータ) (2020-10-02T07:37:40Z) - Co-evolution of Functional Brain Network at Multiple Scales during Early
Infancy [52.4179778122852]
乳児の2歳から2歳までの縦断的安静時機能的磁気共鳴画像データセットを応用した。
収集した縦断的幼児データセットに提案手法の枠組みを適用して,脳機能ネットワークが異なるスケールで共進化していることを示す最初の証拠を提示した。
論文 参考訳(メタデータ) (2020-09-15T07:21:04Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
我々は、広く使われている最先端のSSMツールの結果を体系的に評価する。
解剖学的ランドマーク/計測推測および病変スクリーニングのための検証フレームワークを提案する。
ShapeWorks と Deformetrica の形状モデルは臨床的に関連する集団レベルの変動を捉えている。
論文 参考訳(メタデータ) (2020-09-07T03:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。