論文の概要: F-INR: Functional Tensor Decomposition for Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2503.21507v1
- Date: Thu, 27 Mar 2025 13:51:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:51:41.528167
- Title: F-INR: Functional Tensor Decomposition for Implicit Neural Representations
- Title(参考訳): F-INR: 難治性神経表現のための機能的テンソル分解
- Authors: Sai Karthikeya Vemuri, Tim Büchner, Joachim Denzler,
- Abstract要約: Implicit Representation (INR) は、ニューラルネットワークを用いて離散信号を連続的に微分可能な関数に符号化する強力なツールとして登場した。
機能的分解によりINR学習を再構築し,高次元タスクを軽量な軸特化サブネットワークに分割するフレームワークF-INRを提案する。
- 参考スコア(独自算出の注目度): 7.183424522250937
- License:
- Abstract: Implicit Neural Representation (INR) has emerged as a powerful tool for encoding discrete signals into continuous, differentiable functions using neural networks. However, these models often have an unfortunate reliance on monolithic architectures to represent high-dimensional data, leading to prohibitive computational costs as dimensionality grows. We propose F-INR, a framework that reformulates INR learning through functional tensor decomposition, breaking down high-dimensional tasks into lightweight, axis-specific sub-networks. Each sub-network learns a low-dimensional data component (e.g., spatial or temporal). Then, we combine these components via tensor operations, reducing forward pass complexity while improving accuracy through specialized learning. F-INR is modular and, therefore, architecture-agnostic, compatible with MLPs, SIREN, WIRE, or other state-of-the-art INR architecture. It is also decomposition-agnostic, supporting CP, TT, and Tucker modes with user-defined rank for speed-accuracy control. In our experiments, F-INR trains $100\times$ faster than existing approaches on video tasks while achieving higher fidelity (+3.4 dB PSNR). Similar gains hold for image compression, physics simulations, and 3D geometry reconstruction. Through this, F-INR offers a new scalable, flexible solution for high-dimensional signal modeling.
- Abstract(参考訳): Implicit Neural Representation (INR)は、ニューラルネットワークを使用して離散信号を連続的な微分可能な関数に符号化する強力なツールとして登場した。
しかし、これらのモデルは高次元データを表現するためにモノリシックなアーキテクチャに不運な依存を持つことが多く、次元が大きくなるにつれて計算コストが禁じられる。
機能的テンソル分解によりINR学習を再構築し,高次元タスクを軽量な軸特化サブネットワークに分割するフレームワークF-INRを提案する。
各サブネットワークは、低次元のデータコンポーネント(例えば、空間または時間)を学習する。
そして,これらの成分をテンソル操作で組み合わせ,フォワードパスの複雑性を低減し,特殊学習による精度の向上を図る。
F-INRはモジュラーであり、アーキテクチャに依存しないため、MPP、SIREN、WIRE、その他の最先端のINRアーキテクチャと互換性がある。
分解非依存で、CP、TT、Tuckerモードをサポートし、速度精度制御のためにユーザ定義のランクを付ける。
我々の実験では、F-INRは、既存のビデオタスクのアプローチよりも100\times$でトレーニングし、高忠実度(+3.4 dB PSNR)を実現している。
画像圧縮、物理シミュレーション、三次元幾何再構成についても同様の利点がある。
これにより、F-INRは高次元信号モデリングのための新しいスケーラブルで柔軟なソリューションを提供する。
関連論文リスト
- Optimizing 3D Geometry Reconstruction from Implicit Neural Representations [2.3940819037450987]
暗黙の神経表現は、3D幾何学を学ぶための強力なツールとして登場した。
本稿では,計算コストを削減し,細部を捉える新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-16T16:36:23Z) - SL$^{2}$A-INR: Single-Layer Learnable Activation for Implicit Neural Representation [6.572456394600755]
Inlicit Neural Representation (INR)は、ニューラルネットワークを利用して、座標入力を対応する属性に変換することで、視覚関連領域において大きな進歩をもたらした。
我々は,INRアーキテクチャに新しいアプローチを導入することで,これらの課題を緩和できることを示す。
具体的には,シングルレイヤの学習可能なアクティベーション関数と従来のReLUアクティベーションを用いた合成を組み合わせたハイブリッドネットワークSL$2$A-INRを提案する。
論文 参考訳(メタデータ) (2024-09-17T02:02:15Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
入射神経表現(INR)は、複雑な信号の連続的および分解非依存的な表現を提供するためにニューラルネットワークを使用する。
提案したFKANは、第1層のフーリエ級数としてモデル化された学習可能なアクティベーション関数を用いて、タスク固有の周波数成分を効果的に制御し、学習する。
実験結果から,提案したFKANモデルは,最先端の3つのベースラインスキームよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-14T05:53:33Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning for Compression [1.0356366043809717]
モデル圧縮技術として特別に設計された記号回帰に対するニューラルネットワークアプローチである$ttSymbolNet$を提案する。
このフレームワークは、単一のトレーニングプロセスにおいてモデルウェイト、入力特徴、数学的演算子の動的プルーニングを可能にする。
論文 参考訳(メタデータ) (2024-01-18T12:51:38Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Progressive Fourier Neural Representation for Sequential Video
Compilation [75.43041679717376]
連続学習によって動機づけられたこの研究は、シーケンシャルエンコーディングセッションを通じて、複数の複雑なビデオデータに対して、ニューラル暗黙表現を蓄積し、転送する方法を研究する。
本稿では,FFNR(Progressive Fourier Neural Representation)という,FFNR(Progressive Fourier Neural Representation)という,FFNR(Progressive Fourier Neural Representation)という手法を提案する。
我々は,UVG8/17とDAVIS50のビデオシーケンスベンチマークでPFNR法を検証し,強力な連続学習ベースラインよりも優れた性能向上を実現した。
論文 参考訳(メタデータ) (2023-06-20T06:02:19Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - Towards Lightweight Controllable Audio Synthesis with Conditional
Implicit Neural Representations [10.484851004093919]
入射神経表現(英語: Implicit Neural representations、INR)は、低次元関数を近似するニューラルネットワークである。
本研究では、音声合成のための生成フレームワークの軽量バックボーンとして、CINR(Conditional Implicit Neural Representations)の可能性に光を当てた。
論文 参考訳(メタデータ) (2021-11-14T13:36:18Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。