MONO2REST: Identifying and Exposing Microservices: a Reusable RESTification Approach
- URL: http://arxiv.org/abs/2503.21522v1
- Date: Thu, 27 Mar 2025 14:10:33 GMT
- Title: MONO2REST: Identifying and Exposing Microservices: a Reusable RESTification Approach
- Authors: Matthéo Lecrivain, Hanifa Barry, Dalila Tamzalit, Houari Sahraoui,
- Abstract summary: Many organizations are pursuing the migration of legacy monolithic systems to an architectural style.<n>This process is challenging, risky, time-intensive, and prone to failure while several organizations lack necessary financial resources, time, or expertise to set up this migration process.<n>We propose exposing a legacy system as a microservice application without having to migrate it.
- Score: 0.7499722271664147
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The microservices architectural style has become the de facto standard for large-scale cloud applications, offering numerous benefits in scalability, maintainability, and deployment flexibility. Many organizations are pursuing the migration of legacy monolithic systems to a microservices architecture. However, this process is challenging, risky, time-intensive, and prone-to-failure while several organizations lack necessary financial resources, time, or expertise to set up this migration process. So, rather than trying to migrate a legacy system where migration is risky or not feasible, we suggest exposing it as a microservice application without without having to migrate it. In this paper, we present a reusable, automated, two-phase approach that combines evolutionary algorithms with machine learning techniques. In the first phase, we identify microservices at the method level using a multi-objective genetic algorithm that considers both structural and semantic dependencies between methods. In the second phase, we generate REST APIs for each identified microservice using a classification algorithm to assign HTTP methods and endpoints. We evaluated our approach with a case study on the Spring PetClinic application, which has both monolithic and microservices implementations that serve as ground truth for comparison. Results demonstrate that our approach successfully aligns identified microservices with those in the reference microservices implementation, highlighting its effectiveness in service identification and API generation.
Related papers
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Pathfinding [76.67608003501479]
We introduce POGEMA, a comprehensive set of tools that includes a fast environment for learning, a problem instance generator, and a visualization toolkit.<n>We also introduce and define an evaluation protocol that specifies a range of domain-related metrics, computed based on primary evaluation indicators.<n>The results of this comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - Migration to Microservices: A Comparative Study of Decomposition
Strategies and Analysis Metrics [0.5076419064097734]
We present a novel clustering method to identify potential in a given monolithic application.
Our approach employs a density-based clustering algorithm considering static analysis, structural, and semantic relationships between classes.
arXiv Detail & Related papers (2024-02-13T14:15:00Z) - A Microservices Identification Method Based on Spectral Clustering for
Industrial Legacy Systems [5.255685751491305]
We propose an automated microservice decomposition method for extracting microservice candidates based on spectral graph theory.
We show that our method can yield favorable results even without the involvement of domain experts.
arXiv Detail & Related papers (2023-12-20T07:47:01Z) - Twin Graph-based Anomaly Detection via Attentive Multi-Modal Learning
for Microservice System [24.2074235652359]
We propose MSTGAD, which seamlessly integrates all available data modalities via attentive multi-modal learning.
We construct a transformer-based neural network with both spatial and temporal attention mechanisms to model the inter-correlations between different modalities.
This enables us to detect anomalies automatically and accurately in real-time.
arXiv Detail & Related papers (2023-10-07T06:28:41Z) - Systematic Mapping of Monolithic Applications to Microservices
Architecture [2.608935407927351]
It discusses the advantages of and the challenges that organizations face when transitioning from a monolithic system.
It presents a case study of a financial application and proposed techniques for identifying on monolithic systems using domain-driven development concepts.
arXiv Detail & Related papers (2023-09-07T15:47:11Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Handling Communication via APIs for Microservices [6.5499625417846685]
We discuss the challenges with conventional techniques of communication using and propose an alternative way of ID-passing via APIs.
We also devise an algorithm to reduce the number of APIs.
arXiv Detail & Related papers (2023-08-02T17:40:34Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
Traditional domain adaptation methods presume that the classes in the source and target domains are identical.
Open-set domain adaptation (OSDA) addresses this limitation by allowing previously unseen classes in the target domain.
We propose a novel framework based on self-paced learning to distinguish common and unknown class samples.
arXiv Detail & Related papers (2023-03-10T14:11:09Z) - Learning to Generalize Unseen Domains via Memory-based Multi-Source
Meta-Learning for Person Re-Identification [59.326456778057384]
We propose the Memory-based Multi-Source Meta-Learning framework to train a generalizable model for unseen domains.
We also present a meta batch normalization layer (MetaBN) to diversify meta-test features.
Experiments demonstrate that our M$3$L can effectively enhance the generalization ability of the model for unseen domains.
arXiv Detail & Related papers (2020-12-01T11:38:16Z) - Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic
Parsing [85.35582118010608]
Task-oriented semantic parsing is a critical component of virtual assistants.
Recent advances in deep learning have enabled several approaches to successfully parse more complex queries.
We propose a novel method that outperforms a supervised neural model at a 10-fold data reduction.
arXiv Detail & Related papers (2020-10-07T17:47:53Z) - MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and
Architectures [61.73533544385352]
We propose a transferable perturbation, MetaPerturb, which is meta-learned to improve generalization performance on unseen data.
As MetaPerturb is a set-function trained over diverse distributions across layers and tasks, it can generalize heterogeneous tasks and architectures.
arXiv Detail & Related papers (2020-06-13T02:54:59Z) - Learning Meta Face Recognition in Unseen Domains [74.69681594452125]
We propose a novel face recognition method via meta-learning named Meta Face Recognition (MFR)
MFR synthesizes the source/target domain shift with a meta-optimization objective.
We propose two benchmarks for generalized face recognition evaluation.
arXiv Detail & Related papers (2020-03-17T14:10:30Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.