論文の概要: Simple and Critical Iterative Denoising: A Recasting of Discrete Diffusion in Graph Generation
- arxiv url: http://arxiv.org/abs/2503.21592v2
- Date: Mon, 23 Jun 2025 16:03:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 14:54:00.242125
- Title: Simple and Critical Iterative Denoising: A Recasting of Discrete Diffusion in Graph Generation
- Title(参考訳): 単純かつ批判的な反復的デノイング:グラフ生成における離散拡散の再キャスト
- Authors: Yoann Boget,
- Abstract要約: 中間ノイズ状態間の依存関係は、逆ノイズ化プロセス中にエラーの蓄積と伝播を引き起こす。
本稿では, 離散拡散を単純化し, 問題を回避し, 簡易反復分解という新しい枠組みを提案する。
実験により,提案手法はグラフ生成タスクにおいて既存の離散拡散ベースラインを著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Discrete Diffusion and Flow Matching models have significantly advanced generative modeling for discrete structures, including graphs. However, the dependencies between intermediate noisy states lead to error accumulation and propagation during the reverse denoising process - a phenomenon known as compounding denoising errors. To address this problem, we propose a novel framework called Simple Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence between intermediate states. Additionally, we enhance our model by incorporating a Critic. During generation, the Critic selectively retains or corrupts elements in an instance based on their likelihood under the data distribution. Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
- Abstract(参考訳): 離散拡散およびフローマッチングモデルは、グラフを含む離散構造に対するかなり高度な生成モデルを持つ。
しかし、中間ノイズ状態間の依存関係は、逆ノイズ発生過程においてエラーの蓄積と伝播を引き起こす。
そこで本研究では, 離散拡散を単純化し, 中間状態間の条件独立性を仮定して回避する, 簡易反復分解という新しい枠組みを提案する。
さらに、批判を取り入れることでモデルを強化する。
生成中、Criticは、データ分散の下でその可能性に基づいて、インスタンス内の要素を選択的に保持または破損する。
実験により,提案手法はグラフ生成タスクにおいて既存の離散拡散ベースラインを著しく上回ることを示す。
関連論文リスト
- Continuous Diffusion Model for Language Modeling [57.396578974401734]
離散データに対する既存の連続拡散モデルは、離散的アプローチと比較して性能が限られている。
本稿では,下層の分類分布の幾何学を組み込んだ言語モデリングのための連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-17T08:54:29Z) - Graph Representation Learning with Diffusion Generative Models [0.0]
我々は、グラフデータの意味のある埋め込みを学習するために、オートエンコーダフレームワーク内で離散拡散モデルを訓練する。
本手法は,グラフ表現学習に使用する離散拡散モデルの可能性を示す。
論文 参考訳(メタデータ) (2025-01-22T07:12:10Z) - Generalized Diffusion Model with Adjusted Offset Noise [1.7767466724342067]
本稿では,厳密な確率的枠組みの中で自然に付加的な雑音を取り入れた一般化拡散モデルを提案する。
我々は、ある調整でノイズを相殺する理論的等価性を確立し、証拠の低い境界に基づいて損失関数を導出する。
合成データセットの実験により、我々のモデルは輝度に関する課題に効果的に対処し、高次元シナリオにおいて従来の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-12-04T08:57:03Z) - Discrete Copula Diffusion [44.96934660818884]
離散拡散モデルがより少ないステップで強い性能を達成するのを防ぐ基本的な制限を同定する。
我々は,コプラモデルと呼ばれる別の深層生成モデルを導入することで,欠落した依存情報を補うための一般的なアプローチを提案する。
本手法は拡散モデルとコプラモデルの両方を微調整する必要はないが, 高い品質のサンプル生成が可能であり, 分解ステップが著しく少ない。
論文 参考訳(メタデータ) (2024-10-02T18:51:38Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Erasing Undesirable Influence in Diffusion Models [51.225365010401006]
拡散モデルは高品質な画像を生成するのに非常に効果的であるが、NSFW(職場では安全ではない)コンテンツの意図しない生成のようなリスクを引き起こす。
本研究では,データに関連付けられた不要な情報を取り除き,保存データに対する拡散モデルの実用性を維持するために設計されたアルゴリズムであるEraseDiffを紹介する。
論文 参考訳(メタデータ) (2024-01-11T09:30:36Z) - On Error Propagation of Diffusion Models [77.91480554418048]
DMのアーキテクチャにおける誤り伝播を数学的に定式化するための理論的枠組みを開発する。
累積誤差を正規化項として適用して誤差伝搬を低減する。
提案した正規化はエラーの伝播を低減し,バニラDMを大幅に改善し,以前のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-08-09T15:31:17Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Information-Theoretic Diffusion [18.356162596599436]
拡散モデルのデノイングは密度モデリングや画像生成において大きな進歩をもたらした。
情報理論における古典的な結果にインスパイアされた拡散モデルのための新しい数学的基礎を導入する。
論文 参考訳(メタデータ) (2023-02-07T23:03:07Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGressは、分類ノードとエッジ属性を持つグラフを生成するための離散化拡散モデルである。
分子と非分子のデータセットで最先端のパフォーマンスを実現し、最大3倍の妥当性が向上する。
また、1.3Mの薬物様分子を含む大規模なGuacaMolデータセットにスケールする最初のモデルでもある。
論文 参考訳(メタデータ) (2022-09-29T12:55:03Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。