COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing
- URL: http://arxiv.org/abs/2503.21670v1
- Date: Thu, 27 Mar 2025 16:36:39 GMT
- Title: COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing
- Authors: Rajvee Sheth, Himanshu Beniwal, Mayank Singh,
- Abstract summary: COMI-LINGUA is the largest manually annotated dataset for code-mixed text, comprising 100,970 instances evaluated by three expert annotators in both Devanagari and Roman scripts.<n>The dataset supports five fundamental NLP tasks: Language Identification, Matrix Language Identification, Part-of-Speech Tagging, Named Entity Recognition, and Translation.<n>We evaluate LLMs on these tasks using COMILINGUA, revealing limitations in current multilingual modeling strategies and emphasizing the need for improved code-mixed text processing capabilities.
- Score: 1.3062731746155414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of digital communication has driven the widespread use of code-mixing, particularly Hindi-English, in multilingual communities. Existing datasets often focus on romanized text, have limited scope, or rely on synthetic data, which fails to capture realworld language nuances. Human annotations are crucial for assessing the naturalness and acceptability of code-mixed text. To address these challenges, We introduce COMI-LINGUA, the largest manually annotated dataset for code-mixed text, comprising 100,970 instances evaluated by three expert annotators in both Devanagari and Roman scripts. The dataset supports five fundamental NLP tasks: Language Identification, Matrix Language Identification, Part-of-Speech Tagging, Named Entity Recognition, and Translation. We evaluate LLMs on these tasks using COMILINGUA, revealing limitations in current multilingual modeling strategies and emphasizing the need for improved code-mixed text processing capabilities. COMI-LINGUA is publically availabe at: https://huggingface.co/datasets/LingoIITGN/COMI-LINGUA.
Related papers
- UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
Open-source large language models (LLMs) have gained significant strength across diverse fields.
In this work, we construct an open-source multilingual supervised fine-tuning dataset.
The resulting UltraLink dataset comprises approximately 1 million samples across five languages.
arXiv Detail & Related papers (2024-02-07T05:05:53Z) - Leveraging Language Identification to Enhance Code-Mixed Text
Classification [0.7340017786387767]
Existing deep-learning models do not take advantage of the implicit language information in code-mixed text.
Our study aims to improve BERT-based models performance on low-resource Code-Mixed Hindi-English datasets.
arXiv Detail & Related papers (2023-06-08T06:43:10Z) - XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
Data scarcity is a crucial issue for the development of highly multilingual NLP systems.
We propose XTREME-UP, a benchmark defined by its focus on the scarce-data scenario rather than zero-shot.
XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies.
arXiv Detail & Related papers (2023-05-19T18:00:03Z) - Prompting Multilingual Large Language Models to Generate Code-Mixed
Texts: The Case of South East Asian Languages [47.78634360870564]
We explore prompting multilingual models to generate code-mixed data for seven languages in South East Asia (SEA)
We find that publicly available multilingual instruction-tuned models such as BLOOMZ are incapable of producing texts with phrases or clauses from different languages.
ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its performance varies depending on the prompt template and language pairing.
arXiv Detail & Related papers (2023-03-23T18:16:30Z) - MUTANT: A Multi-sentential Code-mixed Hinglish Dataset [16.14337612590717]
We propose a novel task of identifying multi-sentential code-mixed text (MCT) from multilingual articles.
As a use case, we leverage multilingual articles and build a first-of-its-kind multi-sentential code-mixed Hinglish dataset.
The MUTANT dataset comprises 67k articles with 85k identified Hinglish MCTs.
arXiv Detail & Related papers (2023-02-23T04:04:18Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
We probe multilingual language models for the amount of cross-lingual lexical knowledge stored in their parameters, and compare them against the original multilingual LMs.
We also devise a novel method to expose this knowledge by additionally fine-tuning multilingual models.
We report substantial gains on standard benchmarks.
arXiv Detail & Related papers (2022-04-30T13:23:16Z) - NUIG-Shubhanker@Dravidian-CodeMix-FIRE2020: Sentiment Analysis of
Code-Mixed Dravidian text using XLNet [0.0]
Social media has penetrated into multilingual societies, however most of them use English to be a preferred language for communication.
It looks natural for them to mix their cultural language with English during conversations resulting in abundance of multilingual data, call this code-mixed data, available in todays' world.
Downstream NLP tasks using such data is challenging due to the semantic nature of it being spread across multiple languages.
This paper uses an auto-regressive XLNet model to perform sentiment analysis on code-mixed Tamil-English and Malayalam-English datasets.
arXiv Detail & Related papers (2020-10-15T14:09:02Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT.
Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages.
arXiv Detail & Related papers (2020-06-11T13:15:59Z) - Multi-SimLex: A Large-Scale Evaluation of Multilingual and Cross-Lingual
Lexical Semantic Similarity [67.36239720463657]
Multi-SimLex is a large-scale lexical resource and evaluation benchmark covering datasets for 12 diverse languages.
Each language dataset is annotated for the lexical relation of semantic similarity and contains 1,888 semantically aligned concept pairs.
Owing to the alignment of concepts across languages, we provide a suite of 66 cross-lingual semantic similarity datasets.
arXiv Detail & Related papers (2020-03-10T17:17:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.