Parsing the Switch: LLM-Based UD Annotation for Complex Code-Switched and Low-Resource Languages
- URL: http://arxiv.org/abs/2506.07274v1
- Date: Sun, 08 Jun 2025 20:23:57 GMT
- Title: Parsing the Switch: LLM-Based UD Annotation for Complex Code-Switched and Low-Resource Languages
- Authors: Olga Kellert, Nemika Tyagi, Muhammad Imran, Nelvin Licona-Guevara, Carlos Gómez-Rodríguez,
- Abstract summary: BiLingua is a pipeline for Universal Dependencies (UD) annotations for code-switched text.<n>First, we develop a prompt-based framework for Spanish-English and Spanish-Guaran'i data.<n>Second, we release two datasets, including the first Spanish-Guaran'i-parsed corpus.<n>Third, we conduct a detailed syntactic analysis of switch points across language pairs and communicative contexts.
- Score: 11.627508350795118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code-switching presents a complex challenge for syntactic analysis, especially in low-resource language settings where annotated data is scarce. While recent work has explored the use of large language models (LLMs) for sequence-level tagging, few approaches systematically investigate how well these models capture syntactic structure in code-switched contexts. Moreover, existing parsers trained on monolingual treebanks often fail to generalize to multilingual and mixed-language input. To address this gap, we introduce the BiLingua Parser, an LLM-based annotation pipeline designed to produce Universal Dependencies (UD) annotations for code-switched text. First, we develop a prompt-based framework for Spanish-English and Spanish-Guaran\'i data, combining few-shot LLM prompting with expert review. Second, we release two annotated datasets, including the first Spanish-Guaran\'i UD-parsed corpus. Third, we conduct a detailed syntactic analysis of switch points across language pairs and communicative contexts. Experimental results show that BiLingua Parser achieves up to 95.29% LAS after expert revision, significantly outperforming prior baselines and multilingual parsers. These results show that LLMs, when carefully guided, can serve as practical tools for bootstrapping syntactic resources in under-resourced, code-switched environments. Data and source code are available at https://github.com/N3mika/ParsingProject
Related papers
- CausalAbstain: Enhancing Multilingual LLMs with Causal Reasoning for Trustworthy Abstention [9.76878200328024]
Large Language Models (LLMs) often exhibit knowledge disparities across languages.<n>We introduce textitCausalAbstain, a method that helps LLMs determine whether to utilize multiple generated feedback responses.<n>Experiments demonstrate that textitCausalAbstain effectively selects helpful feedback and enhances abstention decisions with interpretability.
arXiv Detail & Related papers (2025-05-31T11:35:31Z) - LayAlign: Enhancing Multilingual Reasoning in Large Language Models via Layer-Wise Adaptive Fusion and Alignment Strategy [33.85811169010525]
Large language models (LLMs) exhibit suboptimal performance on low-resource languages.<n>Recent approaches have leveraged multilingual encoders alongside LLMs by introducing trainable parameters connecting the two models.<n>We propose aname, a framework that integrates representations from all encoder layers.
arXiv Detail & Related papers (2025-02-17T03:45:03Z) - Linguistics Theory Meets LLM: Code-Switched Text Generation via Equivalence Constrained Large Language Models [16.82812708514889]
Code-switching, the phenomenon of alternating between two or more languages in a single conversation, presents unique challenges for Natural Language Processing (NLP)
Most existing research focuses on either syntactic constraints or neural generation, with few efforts to integrate linguistic theory with large language models (LLMs) for generating natural code-switched text.
We introduce EZSwitch, a novel framework that combines Equivalence Constraint Theory (ECT) with LLMs to produce linguistically valid and fluent code-switched text.
arXiv Detail & Related papers (2024-10-30T03:03:32Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.<n>Currently, instruction-tuned large language models (LLMs) excel at various English tasks.<n>Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing [6.074150063191985]
Cross-Lingual Back-Parsing is a novel data augmentation methodology designed to enhance cross-lingual transfer for semantic parsing.
Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings.
arXiv Detail & Related papers (2024-10-01T08:53:38Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.<n>We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.<n>We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.<n>But can these models relate corresponding concepts across languages, i.e., be crosslingual?<n>This study evaluates state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - A Tale of Two Languages: Large-Vocabulary Continuous Sign Language Recognition from Spoken Language Supervision [74.972172804514]
We introduce a multi-task Transformer model, CSLR2, that is able to ingest a signing sequence and output in a joint embedding space between signed language and spoken language text.
New dataset annotations provide continuous sign-level annotations for six hours of test videos, and will be made publicly available.
Our model significantly outperforms the previous state of the art on both tasks.
arXiv Detail & Related papers (2024-05-16T17:19:06Z) - Progressive Sentiment Analysis for Code-Switched Text Data [26.71396390928905]
We focus on code-switched sentiment analysis where we have a labelled resource-rich language dataset and unlabelled code-switched data.
We propose a framework that takes the distinction between resource-rich and low-resource language into account.
arXiv Detail & Related papers (2022-10-25T23:13:53Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
We probe multilingual language models for the amount of cross-lingual lexical knowledge stored in their parameters, and compare them against the original multilingual LMs.
We also devise a novel method to expose this knowledge by additionally fine-tuning multilingual models.
We report substantial gains on standard benchmarks.
arXiv Detail & Related papers (2022-04-30T13:23:16Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.