SeisRDT: Latent Diffusion Model Based On Representation Learning For Seismic Data Interpolation And Reconstruction
- URL: http://arxiv.org/abs/2503.21791v1
- Date: Mon, 17 Mar 2025 10:16:35 GMT
- Title: SeisRDT: Latent Diffusion Model Based On Representation Learning For Seismic Data Interpolation And Reconstruction
- Authors: Shuang Wang, Fei Deng, Peifan Jiang, Zezheng Ni, Bin Wang,
- Abstract summary: Due to limitations such as geographic, physical, or economic factors, collected seismic data often have missing traces.<n>Traditional seismic data reconstruction methods face the challenge of selecting numerous empirical parameters and struggle to handle large-scale continuous missing traces.<n>We propose a latent diffusion transformer utilizing representation learning for seismic data reconstruction.
- Score: 11.530476559185878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to limitations such as geographic, physical, or economic factors, collected seismic data often have missing traces. Traditional seismic data reconstruction methods face the challenge of selecting numerous empirical parameters and struggle to handle large-scale continuous missing traces. With the advancement of deep learning, various diffusion models have demonstrated strong reconstruction capabilities. However, these UNet-based diffusion models require significant computational resources and struggle to learn the correlation between different traces in seismic data. To address the complex and irregular missing situations in seismic data, we propose a latent diffusion transformer utilizing representation learning for seismic data reconstruction. By employing a mask modeling scheme based on representation learning, the representation module uses the token sequence of known data to infer the token sequence of unknown data, enabling the reconstructed data from the diffusion model to have a more consistent data distribution and better correlation and accuracy with the known data. We propose the Representation Diffusion Transformer architecture, and a relative positional bias is added when calculating attention, enabling the diffusion model to achieve global modeling capability for seismic data. Using a pre-trained data compression model compresses the training and inference processes of the diffusion model into a latent space, which, compared to other diffusion model-based reconstruction methods, reduces computational and inference costs. Reconstruction experiments on field and synthetic datasets indicate that our method achieves higher reconstruction accuracy than existing methods and can handle various complex missing scenarios.
Related papers
- Data augmentation using diffusion models to enhance inverse Ising inference [2.654300333196867]
We show that diffusion models can enhance parameter inference by augmenting small datasets.<n>This study serves as a proof-of-concept for using diffusion models for data augmentation in physics-related problems.
arXiv Detail & Related papers (2025-03-13T08:29:17Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
We propose a novel diffusion model reconstruction framework tailored for 3D seismic data.
We introduce a 3D neural network architecture into the diffusion model, successfully extending the 2D diffusion model to 3D space.
Our method exhibits superior reconstruction accuracy when applied to both field datasets and synthetic datasets.
arXiv Detail & Related papers (2024-03-18T05:10:13Z) - Dynamical Regimes of Diffusion Models [14.797301819675454]
We study generative diffusion models in the regime where the dimension of space and the number of data are large.
Our analysis reveals three distinct dynamical regimes during the backward generative diffusion process.
The dependence of the collapse time on the dimension and number of data provides a thorough characterization of the curse of dimensionality for diffusion models.
arXiv Detail & Related papers (2024-02-28T17:19:26Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - On the Limitation of Diffusion Models for Synthesizing Training Datasets [5.384630221560811]
This paper investigates the gap between synthetic and real samples by analyzing the synthetic samples reconstructed from real samples through the diffusion and reverse process.
We found that the synthetic datasets degrade classification performance over real datasets even when using state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-11-22T01:42:23Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.