論文の概要: ImF: Implicit Fingerprint for Large Language Models
- arxiv url: http://arxiv.org/abs/2503.21805v1
- Date: Tue, 25 Mar 2025 05:47:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 19:09:59.391545
- Title: ImF: Implicit Fingerprint for Large Language Models
- Title(参考訳): ImF: 大きな言語モデルのための暗黙のフィンガープリント
- Authors: Wu jiaxuan, Peng Wanli, Fu hang, Xue Yiming, Wen juan,
- Abstract要約: 我々はImF(Implicit Fingerprints)と呼ばれる新しい指紋注入パラダイムを提案する。
ImFは強力な意味的相関を持つ指紋ペアを構築し、大きな言語モデル(LLM)内の自然な質問応答ペアとして扱う。
実験により,ImFは敵条件下で高い検証成功率を維持していることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training large language models (LLMs) is resource-intensive and expensive, making intellectual property (IP) protection essential. Most existing model fingerprint methods inject fingerprints into LLMs to protect model ownership. These methods create fingerprint pairs with weak semantic correlations, lacking the contextual coherence and semantic relatedness founded in normal question-answer (QA) pairs in LLMs. In this paper, we propose a Generation Revision Intervention (GRI) attack that can effectively exploit this flaw to erase fingerprints, highlighting the need for more secure model fingerprint methods. Thus, we propose a novel injected fingerprint paradigm called Implicit Fingerprints (ImF). ImF constructs fingerprint pairs with strong semantic correlations, disguising them as natural QA pairs within LLMs. This ensures the fingerprints are consistent with normal model behavior, making them indistinguishable and robust against detection and removal. Our experiment on multiple LLMs demonstrates that ImF retains high verification success rates under adversarial conditions, offering a reliable solution for protecting LLM ownership.
- Abstract(参考訳): 大規模言語モデル(LLM)の訓練は資源集約的で高価であり、知的財産権(IP)保護が不可欠である。
既存のモデル指紋法のほとんどは、モデルの所有権を保護するためにLLMに指紋を注入する。
これらの手法は,LLMの通常の問合せ (QA) 対に生じる文脈的コヒーレンスと意味的関連性を欠いた,弱い意味的相関を持つ指紋対を生成する。
本稿では,この欠陥を効果的に活用して指紋を消去できるジェネレーション・リビジョン・インターベンション(GRI)攻撃を提案する。
そこで本研究では,ImF (Implicit Fingerprints) と呼ばれる新しい指紋注入パラダイムを提案する。
ImFは強力な意味的相関を持つ指紋ペアを構築し、LLM内の自然なQAペアとして分類する。
これにより、指紋は通常のモデル動作と一致し、検出や削除に対して識別不能で堅牢になる。
複数のLLMに対する実験により、ImFは敵条件下で高い検証成功率を維持し、LLMの所有権を保護するための信頼性の高いソリューションを提供することが示された。
関連論文リスト
- MEraser: An Effective Fingerprint Erasure Approach for Large Language Models [19.8112399985437]
大規模言語モデル(LLM)は、様々な分野に広まり、モデルの所有と知的財産保護に関する重要な懸念を提起している。
モデル性能を維持しつつ, LLMからバックドアベースの指紋を効果的に除去する手法であるMismatched Eraser(MEraser)を提案する。
論文 参考訳(メタデータ) (2025-06-14T15:48:53Z) - RAP-SM: Robust Adversarial Prompt via Shadow Models for Copyright Verification of Large Language Models [12.459241957411669]
RAP-SMは、大規模な言語モデル全体の公開指紋を抽出する新しいフレームワークである。
実験の結果,RAP-SMは異なるモデル間の固有共通点を効果的に捉えていることがわかった。
論文 参考訳(メタデータ) (2025-05-08T03:21:58Z) - Scalable Fingerprinting of Large Language Models [46.26999419117367]
我々はPerinucleus sampleと呼ばれる新しい手法を導入し、スケーラブルで永続的で無害な指紋を生成する。
この手法により,Llama-3.1-8Bモデルに24,576個の指紋を付加できることを示した。
論文 参考訳(メタデータ) (2025-02-11T18:43:07Z) - Invisible Traces: Using Hybrid Fingerprinting to identify underlying LLMs in GenAI Apps [0.0]
大規模言語モデル(LLM)のフィンガープリントは、AI統合アプリケーションのセキュリティと透明性を保証するために欠かせないものとなっている。
静的および動的フィンガープリント技術を統合することにより,これらの課題に対処する新しいフィンガープリントフレームワークを提案する。
提案手法は, 動的環境下でのLDMの高精度かつ堅牢なフィンガープリントを可能にするため, 建築特性と挙動特性を同定する。
論文 参考訳(メタデータ) (2025-01-30T19:15:41Z) - FIT-Print: Towards False-claim-resistant Model Ownership Verification via Targeted Fingerprint [29.015707553430442]
モデルフィンガープリントは、オープンソースモデルの知的財産権を保護するために広く採用されているアプローチである。
本稿では, 相手が第三者モデルの所有権を誤って主張する, 虚偽のクレーム攻撃に対して脆弱であることを明らかにする。
これらの知見に触発され,疑似クレーム攻撃に対処するための指紋認証パラダイム(FIT-Print)を提案する。
論文 参考訳(メタデータ) (2025-01-26T13:00:58Z) - Sample Correlation for Fingerprinting Deep Face Recognition [83.53005932513156]
SAC(SA Corremplelation)に基づく新しいモデル盗難検出手法を提案する。
SACは、顔認証や顔の感情認識を含む、深層顔認識における様々なモデル盗難攻撃に対して、AUC、p値、F1スコアの点で最高のパフォーマンスを示すことに成功した。
我々は,SAC-JC の評価を Tiny-ImageNet や CIFAR10 などのオブジェクト認識に拡張し,従来の手法よりも SAC-JC の優れた性能を示す。
論文 参考訳(メタデータ) (2024-12-30T07:37:06Z) - UTF:Undertrained Tokens as Fingerprints A Novel Approach to LLM Identification [23.164580168870682]
大型言語モデル(LLM)のフィンガープリントは、モデルのオーナシップの検証、信頼性の確保、誤用防止に不可欠である。
本稿では,未学習トークンを利用したLDMのフィンガープリント手法を提案する。
提案手法は,モデルの性能に最小限のオーバーヘッドと影響があり,対象モデルのオーナシップ識別にホワイトボックスアクセスを必要としない。
論文 参考訳(メタデータ) (2024-10-16T07:36:57Z) - MergePrint: Merge-Resistant Fingerprints for Robust Black-box Ownership Verification of Large Language Models [1.9249287163937978]
モデルマージを継続することのできる頑健な指紋を埋め込むための新しいフィンガープリント手法であるMergePrintを提案する。
MergePrintはブラックボックスのオーナシップの検証を可能にする。モデルが特定の指紋入力に対してターゲット出力を生成するかどうかのみを所有者が確認する必要がある。
論文 参考訳(メタデータ) (2024-10-11T08:00:49Z) - FP-VEC: Fingerprinting Large Language Models via Efficient Vector Addition [11.885529039351217]
FP-VECは,大規模言語モデルにおいて,指紋ベクトルを効率的な指紋認証手法として活用するためのパイロット研究である。
提案手法では,モデルに埋め込まれた秘密署名を表す指紋ベクトルを生成し,同一の指紋を無数のLLMにシームレスに組み込むことができる。
いくつかのLCMの結果から、FP-VECはCPUのみのデバイスで指紋認証を実行し、単一のトレーニングと無制限の指紋認証プロセスでスケーラブルで、モデルの正常な動作を保存することで軽量であることが示された。
論文 参考訳(メタデータ) (2024-09-13T14:04:39Z) - Hey, That's My Model! Introducing Chain & Hash, An LLM Fingerprinting Technique [2.7174461714624805]
大規模言語モデル(LLM)の盗難や誤用に対する懸念が高まり、効果的な指紋認証の必要性が高まっている。
指紋の透明性、効率性、永続性、ロバスト性、非偽造性という5つの重要な特性を定義します。
我々は,指紋の完全性を維持しつつ,認証された所有権の証明を提供する新しい指紋認証フレームワークを導入する。
論文 参考訳(メタデータ) (2024-07-15T16:38:56Z) - Instructional Fingerprinting of Large Language Models [57.72356846657551]
本稿では,非常に軽量なインストラクションチューニングの一形態として,Large Language Model (LLM) の指紋認証に関する実験的検討を行う。
11個の LLM 実験の結果,このアプローチは軽量であり,モデルの正常な挙動には影響しないことがわかった。
また、パブリッシャーの誇張を防ぎ、指紋の推測やパラメータ効率のトレーニングに対する堅牢性を維持し、MITライセンスのような多段階の指紋認証をサポートする。
論文 参考訳(メタデータ) (2024-01-21T09:51:45Z) - HuRef: HUman-REadable Fingerprint for Large Language Models [44.9820558213721]
HuRefは、大きな言語モデルのための人間可読指紋である。
トレーニングやモデルパラメータを公開することなく、ベースモデルを独自に識別する。
論文 参考訳(メタデータ) (2023-12-08T05:01:47Z) - In and Out-of-Domain Text Adversarial Robustness via Label Smoothing [64.66809713499576]
多様なNLPタスクの基本モデルにおいて,ラベルの平滑化戦略によって提供される対角的ロバスト性について検討する。
実験の結果,ラベルのスムース化は,BERTなどの事前学習モデルにおいて,様々な攻撃に対して,逆方向の堅牢性を大幅に向上させることがわかった。
また,予測信頼度とロバスト性の関係を解析し,ラベルの平滑化が敵の例に対する過度な信頼誤差を減少させることを示した。
論文 参考訳(メタデータ) (2022-12-20T14:06:50Z) - Are You Stealing My Model? Sample Correlation for Fingerprinting Deep
Neural Networks [86.55317144826179]
従来の方法は、常にモデル指紋として転送可能な敵の例を利用する。
本稿では,SAmple correlation (SAC) に基づく新しいモデル盗難検出手法を提案する。
SACは、敵の訓練や移動学習を含む様々なモデル盗難攻撃をうまく防いでいる。
論文 参考訳(メタデータ) (2022-10-21T02:07:50Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Fingerprinting Image-to-Image Generative Adversarial Networks [53.02510603622128]
Generative Adversarial Networks (GAN) は様々なアプリケーションシナリオで広く利用されている。
本稿では,信頼できる第三者に基づく画像間GANの知的保護のための新しい指紋認証方式を提案する。
論文 参考訳(メタデータ) (2021-06-19T06:25:10Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。