LightSNN: Lightweight Architecture Search for Sparse and Accurate Spiking Neural Networks
- URL: http://arxiv.org/abs/2503.21846v1
- Date: Thu, 27 Mar 2025 16:38:13 GMT
- Title: LightSNN: Lightweight Architecture Search for Sparse and Accurate Spiking Neural Networks
- Authors: Yesmine Abdennadher, Giovanni Perin, Riccardo Mazzieri, Jacopo Pegoraro, Michele Rossi,
- Abstract summary: Spiking Neural Networks (SNNs) are highly regarded for their energy efficiency, inherent activation sparsity, and suitability for real-time processing in edge devices.<n>Most current SNN methods adopt architectures resembling traditional artificial neural networks (ANNs) leading to suboptimal performance when applied to SNNs.<n>We present LightSNN, a rapid and efficient Neural Network Architecture Search (NAS) technique specifically tailored for SNNs.
- Score: 1.0485739694839666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) are highly regarded for their energy efficiency, inherent activation sparsity, and suitability for real-time processing in edge devices. However, most current SNN methods adopt architectures resembling traditional artificial neural networks (ANNs), leading to suboptimal performance when applied to SNNs. While SNNs excel in energy efficiency, they have been associated with lower accuracy levels than traditional ANNs when utilizing conventional architectures. In response, in this work we present LightSNN, a rapid and efficient Neural Network Architecture Search (NAS) technique specifically tailored for SNNs that autonomously leverages the most suitable architecture, striking a good balance between accuracy and efficiency by enforcing sparsity. Based on the spiking NAS network (SNASNet) framework, a cell-based search space including backward connections is utilized to build our training-free pruning-based NAS mechanism. Our technique assesses diverse spike activation patterns across different data samples using a sparsity-aware Hamming distance fitness evaluation. Thorough experiments are conducted on both static (CIFAR10 and CIFAR100) and neuromorphic datasets (DVS128-Gesture). Our LightSNN model achieves state-of-the-art results on CIFAR10 and CIFAR100, improves performance on DVS128Gesture by 4.49%, and significantly reduces search time, most notably offering a 98x speedup over SNASNet and running 30% faster than the best existing method on DVS128Gesture.
Related papers
- Spatial-Temporal Search for Spiking Neural Networks [32.937536365872745]
Spiking Neural Networks (SNNs) are considered as a potential candidate for the next generation of artificial intelligence.
We propose a differentiable approach to optimize SNN on both spatial and temporal dimensions.
Our methods achieve comparable classification performance of CIFAR10/100 and ImageNet with accuracies of 96.43%, 78.96%, and 70.21%, respectively.
arXiv Detail & Related papers (2024-10-24T09:32:51Z) - Reconsidering the energy efficiency of spiking neural networks [4.37952937111446]
Spiking neural networks (SNNs) are generally regarded as more energy-efficient because they do not use multiplications.
We present a comparison of the energy consumption of artificial neural networks (ANNs) and SNNs from a hardware perspective.
arXiv Detail & Related papers (2024-08-29T07:00:35Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - NeuroNAS: A Framework for Energy-Efficient Neuromorphic Compute-in-Memory Systems using Hardware-Aware Spiking Neural Architecture Search [6.006032394972252]
Spiking Neural Networks (SNNs) have demonstrated capabilities for solving diverse machine learning tasks with ultra-low power/energy consumption.<n>To maximize the performance and efficiency of SNN inference, Compute-in-Memory (CIM) hardware accelerators have been employed.<n>We propose NeuroNAS, a novel framework for developing energy-efficient neuromorphic CIM systems.
arXiv Detail & Related papers (2024-06-30T09:51:58Z) - SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Autonomous Agents [6.006032394972252]
Spiking Neural Networks offer high accuracy and ultra low-power/energy computation.
SpikeNAS is a novel fast memory-aware neural architecture search framework for SNNs.
Results show that our SpikeNAS improves the searching time and maintains high accuracy as compared to state-of-the-art.
arXiv Detail & Related papers (2024-02-17T16:33:54Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Evolutionary Neural Cascade Search across Supernetworks [68.8204255655161]
We introduce ENCAS - Evolutionary Neural Cascade Search.
ENCAS can be used to search over multiple pretrained supernetworks.
We test ENCAS on common computer vision benchmarks.
arXiv Detail & Related papers (2022-03-08T11:06:01Z) - Neural Architecture Search for Spiking Neural Networks [10.303676184878896]
Spiking Neural Networks (SNNs) have gained huge attention as a potential energy-efficient alternative to conventional Artificial Neural Networks (ANNs)
Most prior SNN methods use ANN-like architectures, which could provide sub-optimal performance for temporal sequence processing of binary information in SNNs.
We introduce a novel Neural Architecture Search (NAS) approach for finding better SNN architectures.
arXiv Detail & Related papers (2022-01-23T16:34:27Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
Spiking neural networks (SNNs) operate via binary spikes distributed over time.
SOTA training strategies for SNNs involve conversion from a non-spiking deep neural network (DNN)
We propose a new training algorithm that accurately captures these distributions, minimizing the error between the DNN and converted SNN.
arXiv Detail & Related papers (2021-12-22T18:47:45Z) - Keys to Accurate Feature Extraction Using Residual Spiking Neural
Networks [1.101002667958165]
Spiking neural networks (SNNs) have become an interesting alternative to conventional artificial neural networks (ANNs)
We present a study on the key components of modern spiking architectures.
We design a spiking version of the successful residual network (ResNet) architecture and test different components and training strategies on it.
arXiv Detail & Related papers (2021-11-10T21:29:19Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.