論文の概要: Hybrid Emotion Recognition: Enhancing Customer Interactions Through Acoustic and Textual Analysis
- arxiv url: http://arxiv.org/abs/2503.21927v1
- Date: Thu, 27 Mar 2025 19:13:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:45.243950
- Title: Hybrid Emotion Recognition: Enhancing Customer Interactions Through Acoustic and Textual Analysis
- Title(参考訳): ハイブリッド感情認識:音響およびテキスト分析による顧客インタラクションの強化
- Authors: Sahan Hewage Wewelwala, T. G. D. K. Sumanathilaka,
- Abstract要約: 本研究では、高度深層学習、自然言語処理(NLP)、大規模言語モデル(LLM)を統合したハイブリッド感情認識システムを提案する。
このシステムは、複雑な感情状態を理解するための従来のアプローチの限界に対処し、ニュアンスな感情検出を実現する。
多様なデータセットに対する厳密なテストは、システムの堅牢性と正確性を示し、顧客サービスを変革する可能性を強調します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This research presents a hybrid emotion recognition system integrating advanced Deep Learning, Natural Language Processing (NLP), and Large Language Models (LLMs) to analyze audio and textual data for enhancing customer interactions in contact centers. By combining acoustic features with textual sentiment analysis, the system achieves nuanced emotion detection, addressing the limitations of traditional approaches in understanding complex emotional states. Leveraging LSTM and CNN models for audio analysis and DistilBERT for textual evaluation, the methodology accommodates linguistic and cultural variations while ensuring real-time processing. Rigorous testing on diverse datasets demonstrates the system's robustness and accuracy, highlighting its potential to transform customer service by enabling personalized, empathetic interactions and improving operational efficiency. This research establishes a foundation for more intelligent and human-centric digital communication, redefining customer service standards.
- Abstract(参考訳): 本研究では,高度深層学習,自然言語処理(NLP),大規模言語モデル(LLM)を統合したハイブリッド感情認識システムを提案する。
音声特徴とテキスト感情分析を組み合わせることで、複雑な感情状態を理解するための従来のアプローチの限界に対処し、ニュアンスな感情検出を実現する。
音声分析のためのLSTMとCNNモデルとテキスト評価のためのDistilBERTを利用して、リアルタイム処理を確実にしながら、言語的および文化的変動に対応する。
多様なデータセットに対する厳密なテストは、システムの堅牢性と正確性を示し、パーソナライズされた共感的なインタラクションを可能にし、運用効率を向上させることによって、顧客サービスを変革する可能性を強調している。
この研究は、よりインテリジェントで人間中心のデジタルコミュニケーションの基礎を確立し、カスタマーサービス標準を再定義する。
関連論文リスト
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Unimodal Multi-Task Fusion for Emotional Mimicry Intensity Prediction [6.1058750788332325]
第6回ワークショップおよび感情行動分析コンペティションの一環として,情緒的不安度(EMI)を評価するための新しい方法論を紹介した。
我々の手法は、広範囲なポッドキャストデータセットで事前トレーニングされたWav2Vec 2.0アーキテクチャを活用している。
我々は,個々の特徴をグローバル平均ベクトルと組み合わせた融合手法を用いて特徴抽出プロセスを洗練する。
論文 参考訳(メタデータ) (2024-03-18T15:32:02Z) - From Multilingual Complexity to Emotional Clarity: Leveraging
Commonsense to Unveil Emotions in Code-Mixed Dialogues [38.87497808740538]
会話中の感情を理解することは人間のコミュニケーションの基本的な側面であり、会話における感情認識のためのNLP研究を推進している。
本稿では,感情のより深い理解を促進するために,コモンセンス情報を対話コンテキストと統合する革新的なアプローチを提案する。
総合的な実験により,ERCにおけるコモンセンスの体系的導入によって得られた実質的な性能向上が示された。
論文 参考訳(メタデータ) (2023-10-19T18:17:00Z) - End-to-End Continuous Speech Emotion Recognition in Real-life Customer
Service Call Center Conversations [0.0]
本稿では,顧客サービスコールセンタ会話における連続SERのための大規模実生活データセット(CusEmo)を構築するためのアプローチを提案する。
我々は,実生活におけるコールセンター会話における感情の微妙さ,複雑さ,継続性を捉えるために,次元的感情アノテーションアプローチを採用した。
この研究は、データセットへのEnd-to-End (E2E) SERシステムの適用中に発生する課題にも対処している。
論文 参考訳(メタデータ) (2023-10-02T11:53:48Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
本稿では,REDAffectiveLMと呼ばれる深層学習モデルを用いて,短文文書からの読み手感情検出のための新しい手法を提案する。
コンテクストに特化してリッチ表現に影響を与え, リッチBi-LSTM+Attentionに影響を及ぼすタンデムにおいて, トランスフォーマーに基づく事前学習言語モデルを用いることで, リッチ表現に影響を及ぼす。
論文 参考訳(メタデータ) (2023-01-21T19:28:25Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
感情的テキスト音声合成(ETTS)は近年大きく進歩している。
i-ETTSと呼ばれるETTSの新しい対話型トレーニングパラダイムを提案する。
i-ETTSの最適化品質を確保するため、強化学習による反復トレーニング戦略を策定します。
論文 参考訳(メタデータ) (2021-04-03T13:52:47Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。