論文の概要: Enhancing Pavement Crack Classification with Bidirectional Cascaded Neural Networks
- arxiv url: http://arxiv.org/abs/2503.21956v1
- Date: Thu, 27 Mar 2025 20:08:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:29:51.396343
- Title: Enhancing Pavement Crack Classification with Bidirectional Cascaded Neural Networks
- Title(参考訳): 双方向カスケードニューラルネットワークによる舗装き裂分類の強化
- Authors: Taqwa I. Alhadidi, Asmaa Alazmi, Shadi Jaradat, Ahmed Jaber, Huthaifa Ashqar, Mohammed Elhenawy,
- Abstract要約: 本稿では,2方向カスケードニューラルネットワーク(BCNN)の実装と評価について述べる。
提案したBCNNモデルは,前向き情報流と後向き情報流の両方を活用するために設計され,そのカスケード構造により検出精度が向上した。
総合精度は87%で,精度,リコール,F1スコアは各カテゴリーで高い有効性を示した。
- 参考スコア(独自算出の注目度): 3.23451089389063
- License:
- Abstract: Pavement distress, such as cracks and potholes, is a significant issue affecting road safety and maintenance. In this study, we present the implementation and evaluation of Bidirectional Cascaded Neural Networks (BCNNs) for the classification of pavement crack images following image augmentation. We classified pavement cracks into three main categories: linear cracks, potholes, and fatigue cracks on an enhanced dataset utilizing U-Net 50 for image augmentation. The augmented dataset comprised 599 images. Our proposed BCNN model was designed to leverage both forward and backward information flows, with detection accuracy enhanced by its cascaded structure wherein each layer progressively refines the output of the preceding one. Our model achieved an overall accuracy of 87%, with precision, recall, and F1-score measures indicating high effectiveness across the categories. For fatigue cracks, the model recorded a precision of 0.87, recall of 0.83, and F1-score of 0.85 on 205 images. Linear cracks were detected with a precision of 0.81, recall of 0.89, and F1-score of 0.85 on 205 images, and potholes with a precision of 0.96, recall of 0.90, and F1-score of 0.93 on 189 images. The macro and weighted average of precision, recall, and F1-score were identical at 0.88, confirming the BCNN's excellent performance in classifying complex pavement crack patterns. This research demonstrates the potential of BCNNs to significantly enhance the accuracy and reliability of pavement distress classification, resulting in more effective and efficient pavement maintenance and management systems.
- Abstract(参考訳): クラックやポットホールなどの舗装の難しさは、道路の安全とメンテナンスに影響を与える重要な問題である。
本研究では,2方向カスケードニューラルネットワーク(BCNN)の実装と評価を行った。
画像強化のためにU-Net 50を用いた拡張データセット上で, 舗装き裂を線状き裂, 穴状き裂, 疲労き裂の3種類に分類した。
データセットは599枚の画像で構成された。
提案するBCNNモデルでは,各層が前処理の出力を段階的に改善するカスケード構造により検出精度が向上する。
総合精度は87%で,精度,リコール,F1スコアは各カテゴリーで高い有効性を示した。
疲労き裂については、精度0.87、リコール0.83、F1スコア0.85、205画像が記録された。
線形き裂は精度0.81、リコール0.89、F1スコア0.85、ポットホール0.96、リコール0.90、F1スコア0.93で検出された。
マクロと重み付けされた精度、リコール、F1スコアの平均は0.88と同一であり、複雑な舗装クラックパターンの分類におけるBCNNの優れた性能が確認された。
本研究は,BCNNが舗装災害分類の精度と信頼性を大幅に向上させる可能性を示し,より効率的かつ効率的な舗装維持管理システムを実現する。
関連論文リスト
- Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - EffiSegNet: Gastrointestinal Polyp Segmentation through a Pre-Trained EfficientNet-based Network with a Simplified Decoder [0.8892527836401773]
EffiSegNetは、トレーニング済みの畳み込みニューラルネットワーク(CNN)をバックボーンとして、トランスファーラーニングを活用する新しいセグメンテーションフレームワークである。
Kvasir-SEGデータセットを用いて消化管ポリープセグメンテーションタスクの評価を行い,その成果を得た。
論文 参考訳(メタデータ) (2024-07-23T08:54:55Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - Patch-Level Contrasting without Patch Correspondence for Accurate and
Dense Contrastive Representation Learning [79.43940012723539]
ADCLRは、正確で高密度な視覚表現を学習するための自己教師型学習フレームワークである。
提案手法は, コントラッシブな手法のための新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-23T07:38:09Z) - Uncertainty-inspired Open Set Learning for Retinal Anomaly
Identification [71.06194656633447]
9つの網膜条件の基底像をトレーニングし,不確実性に着想を得たオープンセット(UIOS)モデルを構築した。
しきい値戦略を持つUIOSモデルはF1スコア99.55%、97.01%、91.91%を達成した。
UIOSは、高い不確実性スコアを正しく予測し、非ターゲットの網膜疾患、低品質の眼底画像、および非基本画像のデータセットを手動でチェックする必要があることを示唆した。
論文 参考訳(メタデータ) (2023-04-08T10:47:41Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Semi-supervised learning for generalizable intracranial hemorrhage
detection and segmentation [0.0]
本研究は頭蓋内出血の検出・分節化のための半教師付き学習モデルの開発と評価である。
最初の「教師」ディープラーニングモデルは、2010年から2017年にかけて米国のある機関から収集された457ピクセルの頭部CTスキャンに基づいて訓練された。
2つ目の"学生"モデルは、このピクセルラベル付きデータセットと擬似ラベル付きデータセットの組み合わせでトレーニングされた。
論文 参考訳(メタデータ) (2021-05-03T00:14:43Z) - Automatic classification of multiple catheters in neonatal radiographs
with deep learning [2.256008196530956]
新生児胸部および腹部X線写真上の複数のカテーテルを分類する深層学習アルゴリズムの開発と評価を行った。
畳み込みニューラルネットワーク(CNN)は,新生児胸部777例と腹部X線写真を用いて訓練した。
論文 参考訳(メタデータ) (2020-11-14T21:27:21Z) - Deep Learning Frameworks for Pavement Distress Classification: A
Comparative Analysis [2.752817022620644]
本研究では,舗装の苦痛を検知し,特徴付けるための最先端のディープラーニングアルゴリズムをデプロイする。
モデルは、日本、チェコ、インドの都市部や農村部で撮影された21,041枚の画像を用いて訓練された。
最高のパフォーマンスモデルは、IEEE Global Road Damage Detection Challengeがリリースした2つのテストデータセットで、F1スコアの0.58と0.57を達成した。
論文 参考訳(メタデータ) (2020-10-21T00:26:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。