Data-Agnostic Robotic Long-Horizon Manipulation with Vision-Language-Guided Closed-Loop Feedback
- URL: http://arxiv.org/abs/2503.21969v1
- Date: Thu, 27 Mar 2025 20:32:58 GMT
- Title: Data-Agnostic Robotic Long-Horizon Manipulation with Vision-Language-Guided Closed-Loop Feedback
- Authors: Yuan Meng, Xiangtong Yao, Haihui Ye, Yirui Zhou, Shengqiang Zhang, Zhenshan Bing, Alois Knoll,
- Abstract summary: We introduce DAHLIA, a data-agnostic framework for language-conditioned long-horizon robotic manipulation.<n>LLMs are large language models for real-time task planning and execution.<n>Our framework demonstrates state-of-the-art performance across diverse long-horizon tasks, achieving strong generalization in both simulated and real-world scenarios.
- Score: 12.600525101342026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in language-conditioned robotic manipulation have leveraged imitation and reinforcement learning to enable robots to execute tasks from human commands. However, these methods often suffer from limited generalization, adaptability, and the lack of large-scale specialized datasets, unlike data-rich domains such as computer vision, making long-horizon task execution challenging. To address these gaps, we introduce DAHLIA, a data-agnostic framework for language-conditioned long-horizon robotic manipulation, leveraging large language models (LLMs) for real-time task planning and execution. DAHLIA employs a dual-tunnel architecture, where an LLM-powered planner collaborates with co-planners to decompose tasks and generate executable plans, while a reporter LLM provides closed-loop feedback, enabling adaptive re-planning and ensuring task recovery from potential failures. Moreover, DAHLIA integrates chain-of-thought (CoT) in task reasoning and temporal abstraction for efficient action execution, enhancing traceability and robustness. Our framework demonstrates state-of-the-art performance across diverse long-horizon tasks, achieving strong generalization in both simulated and real-world scenarios. Videos and code are available at https://ghiara.github.io/DAHLIA/.
Related papers
- Spatial Reasoning and Planning for Deep Embodied Agents [2.7195102129095003]
This thesis explores the development of data-driven techniques for spatial reasoning and planning tasks.
It focuses on enhancing learning efficiency, interpretability, and transferability across novel scenarios.
arXiv Detail & Related papers (2024-09-28T23:05:56Z) - Long-horizon Embodied Planning with Implicit Logical Inference and Hallucination Mitigation [7.668848364013772]
We present ReLEP, a novel framework for Real-time Long-horizon Embodied Planning.<n>ReLEP can complete a wide range of long-horizon tasks without in-context examples by learning implicit logical inference through fine-tuning.
arXiv Detail & Related papers (2024-09-24T01:47:23Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks [50.27313829438866]
Plan-Seq-Learn (PSL) is a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control.
PSL achieves success rates of over 85%, out-performing language-based, classical, and end-to-end approaches.
arXiv Detail & Related papers (2024-05-02T17:59:31Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - LoHoRavens: A Long-Horizon Language-Conditioned Benchmark for Robotic
Tabletop Manipulation [38.66406497318709]
This work focuses on the tabletop manipulation task and releases a simulation benchmark, textitLoHoRavens, which covers various long-horizon reasoning aspects spanning color, size, space, arithmetics and reference.
We investigate two methods of bridging the modality gap: caption generation and learnable interface for incorporating explicit and implicit observation feedback to the LLM.
arXiv Detail & Related papers (2023-10-18T14:53:14Z) - Generalizable Long-Horizon Manipulations with Large Language Models [91.740084601715]
This work introduces a framework harnessing the capabilities of Large Language Models (LLMs) to generate primitive task conditions for generalizable long-horizon manipulations.
We create a challenging robotic manipulation task suite based on Pybullet for long-horizon task evaluation.
arXiv Detail & Related papers (2023-10-03T17:59:46Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.