Pretrained Bayesian Non-parametric Knowledge Prior in Robotic Long-Horizon Reinforcement Learning
- URL: http://arxiv.org/abs/2503.21975v1
- Date: Thu, 27 Mar 2025 20:43:36 GMT
- Title: Pretrained Bayesian Non-parametric Knowledge Prior in Robotic Long-Horizon Reinforcement Learning
- Authors: Yuan Meng, Xiangtong Yao, Kejia Chen, Yansong Wu, Liding Zhang, Zhenshan Bing, Alois Knoll,
- Abstract summary: Reinforcement learning (RL) methods typically learn new tasks from scratch, often disregarding prior knowledge that could accelerate the learning process.<n>This work introduces a method that models potential primitive skill motions as having non-parametric properties with an unknown number of underlying features.<n>We utilize a non-parametric model, specifically Dirichlet Process Mixtures, enhanced with birth and merge, to pre-train a skill prior that effectively captures the diverse nature of skills.
- Score: 10.598207472087578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) methods typically learn new tasks from scratch, often disregarding prior knowledge that could accelerate the learning process. While some methods incorporate previously learned skills, they usually rely on a fixed structure, such as a single Gaussian distribution, to define skill priors. This rigid assumption can restrict the diversity and flexibility of skills, particularly in complex, long-horizon tasks. In this work, we introduce a method that models potential primitive skill motions as having non-parametric properties with an unknown number of underlying features. We utilize a Bayesian non-parametric model, specifically Dirichlet Process Mixtures, enhanced with birth and merge heuristics, to pre-train a skill prior that effectively captures the diverse nature of skills. Additionally, the learned skills are explicitly trackable within the prior space, enhancing interpretability and control. By integrating this flexible skill prior into an RL framework, our approach surpasses existing methods in long-horizon manipulation tasks, enabling more efficient skill transfer and task success in complex environments. Our findings show that a richer, non-parametric representation of skill priors significantly improves both the learning and execution of challenging robotic tasks. All data, code, and videos are available at https://ghiara.github.io/HELIOS/.
Related papers
- EXTRACT: Efficient Policy Learning by Extracting Transferable Robot Skills from Offline Data [22.471559284344462]
Most reinforcement learning (RL) methods focus on learning optimal policies over low-level action spaces.
While these methods can perform well in their training environments, they lack the flexibility to transfer to new tasks.
We demonstrate through experiments in sparse, image-based, robot manipulation environments that can more quickly learn new tasks than prior works.
arXiv Detail & Related papers (2024-06-25T17:50:03Z) - Learning Options via Compression [62.55893046218824]
We propose a new objective that combines the maximum likelihood objective with a penalty on the description length of the skills.
Our objective learns skills that solve downstream tasks in fewer samples compared to skills learned from only maximizing likelihood.
arXiv Detail & Related papers (2022-12-08T22:34:59Z) - Residual Skill Policies: Learning an Adaptable Skill-based Action Space
for Reinforcement Learning for Robotics [18.546688182454236]
Skill-based reinforcement learning (RL) has emerged as a promising strategy to leverage prior knowledge for accelerated robot learning.
We propose accelerating exploration in the skill space using state-conditioned generative models.
We validate our approach across four challenging manipulation tasks, demonstrating our ability to learn across task variations.
arXiv Detail & Related papers (2022-11-04T02:42:17Z) - Learning and Retrieval from Prior Data for Skill-based Imitation
Learning [47.59794569496233]
We develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data.
We identify several key design choices that significantly improve performance on novel tasks.
arXiv Detail & Related papers (2022-10-20T17:34:59Z) - Skill-Based Reinforcement Learning with Intrinsic Reward Matching [77.34726150561087]
We present Intrinsic Reward Matching (IRM), which unifies task-agnostic skill pretraining and task-aware finetuning.
IRM enables us to utilize pretrained skills far more effectively than previous skill selection methods.
arXiv Detail & Related papers (2022-10-14T00:04:49Z) - Hierarchical Kickstarting for Skill Transfer in Reinforcement Learning [27.69559938165733]
Practising and honing skills forms a fundamental component of how humans learn, yet artificial agents are rarely specifically trained to perform them.
We investigate how skills can be incorporated into the training of reinforcement learning (RL) agents in complex environments.
Our experiments show that learning with a prior knowledge of useful skills can significantly improve the performance of agents on complex problems.
arXiv Detail & Related papers (2022-07-23T19:23:29Z) - Hierarchical Skills for Efficient Exploration [70.62309286348057]
In reinforcement learning, pre-trained low-level skills have the potential to greatly facilitate exploration.
Prior knowledge of the downstream task is required to strike the right balance between generality (fine-grained control) and specificity (faster learning) in skill design.
We propose a hierarchical skill learning framework that acquires skills of varying complexity in an unsupervised manner.
arXiv Detail & Related papers (2021-10-20T22:29:32Z) - Example-Driven Model-Based Reinforcement Learning for Solving
Long-Horizon Visuomotor Tasks [85.56153200251713]
We introduce EMBR, a model-based RL method for learning primitive skills that are suitable for completing long-horizon visuomotor tasks.
On a Franka Emika robot arm, we find that EMBR enables the robot to complete three long-horizon visuomotor tasks at 85% success rate.
arXiv Detail & Related papers (2021-09-21T16:48:07Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
We propose a method to discover generalizable skills via automated generation of a diverse set of tasks.
As opposed to prior work on unsupervised discovery of skills, our method pairs each skill with a unique task produced by a trainable task generator.
A task discriminator defined on the robot behaviors in the generated tasks is jointly trained to estimate the evidence lower bound of the diversity objective.
The learned skills can then be composed in a hierarchical reinforcement learning algorithm to solve unseen target tasks.
arXiv Detail & Related papers (2021-06-26T03:41:51Z) - Accelerating Reinforcement Learning with Learned Skill Priors [20.268358783821487]
Most modern reinforcement learning approaches learn every task from scratch.
One approach for leveraging prior knowledge is to transfer skills learned on prior tasks to the new task.
We show that learned skill priors are essential for effective skill transfer from rich datasets.
arXiv Detail & Related papers (2020-10-22T17:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.