論文の概要: Contrasting Low and High-Resolution Features for HER2 Scoring using Deep Learning
- arxiv url: http://arxiv.org/abs/2503.22069v1
- Date: Fri, 28 Mar 2025 01:24:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:32:26.024430
- Title: Contrasting Low and High-Resolution Features for HER2 Scoring using Deep Learning
- Title(参考訳): ディープラーニングを用いたHER2スコーリングの低分解能・高分解能特性の比較
- Authors: Ekansh Chauhan, Anila Sharma, Amit Sharma, Vikas Nishadham, Asha Ghughtyal, Ankur Kumar, Gurudutt Gupta, Anurag Mehta, C. V. Jawahar, P. K. Vinod,
- Abstract要約: 本研究は、1,272個のIHCスライド(HER2, ER, PR)からなるインド病理乳がんデータセット(IPD-Breast)を紹介する。
HER2の3方向分類(0, Low, High)の予測モデルの開発に重点を置いている。
複数のディープラーニングモデルの評価により、低解像度のIHC画像を用いたエンドツーエンドのConvNeXtネットワークがAUC、F1を達成し、それぞれ91.79%、83.52%、83.56%の精度が得られた。
- 参考スコア(独自算出の注目度): 25.004143604870457
- License:
- Abstract: Breast cancer, the most common malignancy among women, requires precise detection and classification for effective treatment. Immunohistochemistry (IHC) biomarkers like HER2, ER, and PR are critical for identifying breast cancer subtypes. However, traditional IHC classification relies on pathologists' expertise, making it labor-intensive and subject to significant inter-observer variability. To address these challenges, this study introduces the India Pathology Breast Cancer Dataset (IPD-Breast), comprising of 1,272 IHC slides (HER2, ER, and PR) aimed at automating receptor status classification. The primary focus is on developing predictive models for HER2 3-way classification (0, Low, High) to enhance prognosis. Evaluation of multiple deep learning models revealed that an end-to-end ConvNeXt network utilizing low-resolution IHC images achieved an AUC, F1, and accuracy of 91.79%, 83.52%, and 83.56%, respectively, for 3-way classification, outperforming patch-based methods by over 5.35% in F1 score. This study highlights the potential of simple yet effective deep learning techniques to significantly improve accuracy and reproducibility in breast cancer classification, supporting their integration into clinical workflows for better patient outcomes.
- Abstract(参考訳): 女性の間で最も一般的な悪性腫瘍である乳癌は、効果的な治療のための正確な診断と分類を必要とする。
HER2、ER、PRなどの免疫組織化学(IHC)バイオマーカーは、乳がんの亜型を特定するために重要である。
しかし、従来のIHC分類は、病理学者の専門知識に依存しており、労働集約的で、サーバ間の大きな変動を被っている。
これらの課題に対処するために,1272個のIHCスライド(HER2,ER,PR)からなるIPD-Breast(India Pathology Breast Cancer Dataset)を紹介した。
HER2の3方向分類(0, Low, High)の予測モデルの開発に重点を置いている。
複数のディープラーニングモデルの評価により、低解像度IHC画像を用いたエンドツーエンドのConvNeXtネットワークがAUC、F1を達成し、それぞれ91.79%、83.52%、83.56%の精度を3方向分類において達成し、パッチベースの手法をF1スコアで5.35%以上上回った。
本研究は, 乳がん分類における精度と再現性を大幅に向上させる, 単純かつ効果的な深層学習技術の可能性を明らかにする。
関連論文リスト
- Biomarker based Cancer Classification using an Ensemble with Pre-trained Models [2.2436844508175224]
マルチクラス分類タスクに対して,事前学習したハイパーファストモデル,XGBoost,LightGBMを組み合わせた新しいアンサンブルモデルを提案する。
我々はメタトレーニングしたハイパーファストモデルを用いてがんの分類を行い、AUCは0.9929である。
また,事前学習したハイパーファストモデル,XGBoost,LightGBMを多クラス分類タスクに組み合わせた新しいアンサンブルモデルを提案し,精度を漸進的に向上させる(0.9464)。
論文 参考訳(メタデータ) (2024-06-14T14:43:59Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
転送学習は、よりリッチなデータを持つドメインから取得した機能を活用して、限られたデータを持つドメインのパフォーマンスを向上させるテクニックである。
本稿では,T2強調画像における乳癌からの転移学習による臨床的に有意な前立腺癌予知の改善について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:57:27Z) - Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling [3.711848341917877]
IHC-stained BC 組織像のHER2状態の自動分類にピラミッドサンプリングを用いた深層学習に基づくアプローチを提案する。
本手法は, 様々な空間スケールで形態的特徴を分析し, 計算負荷を効率的に管理し, 細胞レベルでの組織レベルでの詳細な検討を容易にする。
論文 参考訳(メタデータ) (2024-04-01T00:23:22Z) - Dual-path convolutional neural network using micro-FTIR imaging to
predict breast cancer subtypes and biomarkers levels: estrogen receptor,
progesterone receptor, HER2 and Ki67 [0.0]
新しい畳み込みニューラルネットワークであるCaReNet-V2は、乳がんと隣接する組織を分類し、バイオマーカーのレベルを予測するために開発された。
このモデルにより, ER, PR, HER2レベルの予測が可能となった。
論文 参考訳(メタデータ) (2023-10-23T17:05:53Z) - One-dimensional convolutional neural network model for breast cancer
subtypes classification and biochemical content evaluation using micro-FTIR
hyperspectral images [0.0]
本研究は乳がんの亜型評価と生化学的貢献のための1次元深層学習ツールを開発した。
新しい1D畳み込みニューラルネットワークCaReNet-V1は乳癌(CA)と隣接組織(AT)を分類するために開発された
Grad-CAMの1次元適応を応用し, 生体化学的影響について検討した。
論文 参考訳(メタデータ) (2023-10-23T16:58:34Z) - Addressing Uncertainty in Imbalanced Histopathology Image Classification
of HER2 Breast Cancer: An interpretable Ensemble Approach with Threshold
Filtered Single Instance Evaluation (SIE) [0.0]
早期診断は、患者が効率的な治療決定を行うのを助けることで死亡率を軽減することができる。
HER2は乳癌の最も致命的な亜型である。
DenseNet201とXceptionは単一の分類器にまとめられた。
論文 参考訳(メタデータ) (2023-08-01T19:44:31Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。