論文の概要: Multimodal Machine Learning for Real Estate Appraisal: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2503.22119v1
- Date: Fri, 28 Mar 2025 03:47:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:28:44.502100
- Title: Multimodal Machine Learning for Real Estate Appraisal: A Comprehensive Survey
- Title(参考訳): 不動産評価のためのマルチモーダル機械学習:総合的な調査
- Authors: Chenya Huang, Zhidong Li, Fang Chen, Bin Liang,
- Abstract要約: 自動評価、マルチモーダル機械学習に対する新しいアプローチが形になった。
マルチモーダル機械学習は、予測精度の観点から、単一モダリティまたはより少ないモダリティアプローチを著しく上回る。
- 参考スコア(独自算出の注目度): 8.250749654561423
- License:
- Abstract: Real estate appraisal has undergone a significant transition from manual to automated valuation and is entering a new phase of evolution. Leveraging comprehensive attention to various data sources, a novel approach to automated valuation, multimodal machine learning, has taken shape. This approach integrates multimodal data to deeply explore the diverse factors influencing housing prices. Furthermore, multimodal machine learning significantly outperforms single-modality or fewer-modality approaches in terms of prediction accuracy, with enhanced interpretability. However, systematic and comprehensive survey work on the application in the real estate domain is still lacking. In this survey, we aim to bridge this gap by reviewing the research efforts. We begin by reviewing the background of real estate appraisal and propose two research questions from the perspecve of performance and fusion aimed at improving the accuracy of appraisal results. Subsequently, we explain the concept of multimodal machine learning and provide a comprehensive classification and definition of modalities used in real estate appraisal for the first time. To ensure clarity, we explore works related to data and techniques, along with their evaluation methods, under the framework of these two research questions. Furthermore, specific application domains are summarized. Finally, we present insights into future research directions including multimodal complementarity, technology and modality contribution.
- Abstract(参考訳): 不動産評価は手動から自動評価に大きく移行し、新たな進化段階に入った。
さまざまなデータソースに包括的な注意を払って、自動評価、マルチモーダル機械学習に対する新しいアプローチが生まれました。
このアプローチはマルチモーダルデータを統合し、住宅価格に影響を及ぼす様々な要因を深く探求する。
さらに、マルチモーダル機械学習は、予測精度の点で単一モダリティまたは少ないモダリティアプローチを著しく上回り、解釈可能性を高めている。
しかし、不動産分野における応用に関する体系的かつ総合的な調査はいまだに欠落している。
本調査では, このギャップを埋めるために, 研究の成果を概観する。
まず、不動産評価の背景を概観し、評価結果の精度向上を目的とした性能・融合の周知から2つの研究課題を提案する。
その後、マルチモーダル機械学習の概念を説明し、不動産評価で使用されるモダリティの包括的分類と定義を初めて提供する。
本研究では,これらの2つの研究課題の枠組みの下で,データと技術に関する研究と評価手法について検討する。
さらに、特定のアプリケーションドメインを要約する。
最後に,マルチモーダル・コントリビュータ,技術,モダリティ・コントリビュータなどの今後の研究方向性について考察する。
関連論文リスト
- Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
AI生成メディアを検出する方法は急速に進化してきた。
MLLMに基づく汎用検出器は、信頼性検証、説明可能性、ローカライゼーション機能を統合する。
倫理的・セキュリティ的な配慮が、重要な世界的な懸念として浮上している。
論文 参考訳(メタデータ) (2025-02-07T12:18:20Z) - Multimodal Alignment and Fusion: A Survey [7.250878248686215]
マルチモーダル統合により、モデルの精度と適用性が改善される。
我々は既存のアライメントと融合の手法を体系的に分類し分析する。
この調査は、ソーシャルメディア分析、医療画像、感情認識といった分野の応用に焦点を当てている。
論文 参考訳(メタデータ) (2024-11-26T02:10:27Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
MLLM(Multimodal Large Language Models)は、人工知能に大きな進歩をもたらした。
この調査は、4つのコアドメイン(理解、推論、生成、アプリケーション)にわたるMLLMを評価する211のベンチマークを体系的にレビューする。
論文 参考訳(メタデータ) (2024-09-21T15:22:26Z) - Surveying the MLLM Landscape: A Meta-Review of Current Surveys [17.372501468675303]
MLLM(Multimodal Large Language Models)は、人工知能分野における変革の原動力となっている。
本研究の目的は,MLLMのベンチマークテストと評価方法の体系的レビューを提供することである。
論文 参考訳(メタデータ) (2024-09-17T14:35:38Z) - Attribution Regularization for Multimodal Paradigms [7.1262539590168705]
マルチモーダル機械学習は、学習と意思決定プロセスを強化するために、複数のモーダルからの情報を統合することができる。
ユニモーダルモデルは、よりリッチな情報にアクセスできるにもかかわらず、マルチモーダルモデルより優れていることがよく見られる。
本研究は,マルチモーダルモデルの意思決定において,すべてのモーダルからの情報を効果的に活用するための新たな正規化用語を提案する。
論文 参考訳(メタデータ) (2024-04-02T23:05:56Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
マルチメディア分析から医療診断に至るまで、クロスモーダル推論(CMR)が重要な分野として浮上している。
この調査は、解釈可能なクロスモーダル推論(I-CMR)の領域を掘り下げる
本調査では,I-CMRの3段階分類法について概説する。
論文 参考訳(メタデータ) (2023-09-05T05:06:48Z) - Single-Modal Entropy based Active Learning for Visual Question Answering [75.1682163844354]
視覚質問応答(VQA)のマルチモーダル設定におけるアクティブラーニングに対処する
マルチモーダルな入力,画像,質問を考慮し,有効サンプル取得のための新しい手法を提案する。
私たちの新しいアイデアは、実装が簡単で、コスト効率が高く、他のマルチモーダルタスクにも容易に適応できます。
論文 参考訳(メタデータ) (2021-10-21T05:38:45Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
異なる地域に数百の仮想エージェントを配置した8つの検索エンジンの実験を行った。
複数のデータ収集にまたがる研究インフラの性能を実証する。
仮想エージェントは,アルゴリズムの性能を長時間にわたって監視するための,有望な場所である,と結論付けている。
論文 参考訳(メタデータ) (2021-06-10T15:49:58Z) - The Multimodal Sentiment Analysis in Car Reviews (MuSe-CaR) Dataset:
Collection, Insights and Improvements [14.707930573950787]
この種のマルチモーダルデータセットの1つである MuSe-CaR について述べる。
このデータは、最近第1回マルチモーダルセンチメント分析チャレンジのテストベッドとして公開された。
論文 参考訳(メタデータ) (2021-01-15T10:40:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。