論文の概要: FRASE: Structured Representations for Generalizable SPARQL Query Generation
- arxiv url: http://arxiv.org/abs/2503.22144v1
- Date: Fri, 28 Mar 2025 04:39:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:32:33.600839
- Title: FRASE: Structured Representations for Generalizable SPARQL Query Generation
- Title(参考訳): FRASE: 一般化可能なSPARQLクエリ生成のための構造化表現
- Authors: Papa Abdou Karim Karou Diallo, Amal Zouaq,
- Abstract要約: 本稿では,FSRL(Frame Semantic Role Labeling)を利用したFRASE(FRAme-based Semantic Enhancement)を提案する。
また、LC-QuAD 2.0から派生した新しいデータセットであるLC-QuAD 3.0について、フレーム検出とフレーム要素の議論へのマッピングを通じて、FRASEを用いて各質問を豊かにする。
フレームベースの構造化表現の統合は、SPARQL生成性能を一貫して改善することを示す。
- 参考スコア(独自算出の注目度): 2.5782420501870296
- License:
- Abstract: Translating natural language questions into SPARQL queries enables Knowledge Base querying for factual and up-to-date responses. However, existing datasets for this task are predominantly template-based, leading models to learn superficial mappings between question and query templates rather than developing true generalization capabilities. As a result, models struggle when encountering naturally phrased, template-free questions. This paper introduces FRASE (FRAme-based Semantic Enhancement), a novel approach that leverages Frame Semantic Role Labeling (FSRL) to address this limitation. We also present LC-QuAD 3.0, a new dataset derived from LC-QuAD 2.0, in which each question is enriched using FRASE through frame detection and the mapping of frame-elements to their argument. We evaluate the impact of this approach through extensive experiments on recent large language models (LLMs) under different fine-tuning configurations. Our results demonstrate that integrating frame-based structured representations consistently improves SPARQL generation performance, particularly in challenging generalization scenarios when test questions feature unseen templates (unknown template splits) and when they are all naturally phrased (reformulated questions).
- Abstract(参考訳): 自然言語の質問をSPARQLクエリに翻訳することで、現実的および最新応答の知識ベースクエリが可能になる。
しかし、このタスクの既存のデータセットは主にテンプレートベースであり、真の一般化機能を開発するのではなく、質問とクエリテンプレート間の表面マッピングを学習するモデルが導かれる。
その結果、モデルは自然に言い換えられたテンプレートなしの質問に遭遇する際に苦労する。
本稿では,FSRL(Frame Semantic Role Labeling)を利用したFRASE(FRAme-based Semantic Enhancement)を提案する。
また、LC-QuAD 2.0から派生した新しいデータセットであるLC-QuAD 3.0について、フレーム検出とフレーム要素の議論へのマッピングを通じて、FRASEを用いて各質問を豊かにする。
我々は,最近の大規模言語モデル (LLM) に対する広範囲な実験を通じて,異なる微調整構成下でのアプローチの効果を評価する。
その結果、フレームベースの構造化表現の統合はSPARQL生成性能を一貫して改善し、特に、テスト質問が目に見えないテンプレート(未知のテンプレート分割)を特徴付ける場合や、それらすべてが自然に言い換えられる場合(リフォームされた質問)において、難しい一般化シナリオにおいて顕著であることを示した。
関連論文リスト
- Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
知識グラフクエリ埋め込み(KGQE)は、不完全なKGに対する複雑な推論のために、低次元KG空間に一階論理(FOL)クエリを埋め込むことを目的としている。
近年の研究では、FOLクエリの論理的セマンティクスをよりよく捉えるために、さまざまな外部情報(エンティティタイプや関係コンテキストなど)を統合している。
コードのようなクエリ命令から遅延クエリパターンをキャプチャする効果的なクエリ命令解析(QIPP)を提案する。
論文 参考訳(メタデータ) (2024-10-27T03:18:52Z) - Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction [1.0968343822308813]
本稿では,表型データから直交三重項を抽出し,それを検索拡張生成(RAG)モデルに統合することにより,微調整GPT-3.5-turbo-0125モデルにより生成された応答の精度,コヒーレンス,コンテキスト的リッチ性を向上させる手法を提案する。
FeTaQAデータセットの既存のベースライン、特にSacre-BLEUとROUGEの指標に優れています。
論文 参考訳(メタデータ) (2024-09-21T16:46:15Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - NL2KQL: From Natural Language to Kusto Query [1.7931930942711818]
NL2KQLは、大規模言語モデル(LLM)を使用して自然言語クエリ(NLQ)をKusto Query Language(KQL)クエリに変換する革新的なフレームワークである。
NL2KQLのパフォーマンスを検証するために、オンライン(クエリ実行に基づく)とオフライン(クエリ解析に基づく)メトリクスの配列を使用します。
論文 参考訳(メタデータ) (2024-04-03T01:09:41Z) - SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question
Answering over a Life Science Knowledge Graph [0.0]
生命科学知識グラフを用いた質問応答のためのOpenLlama LLMの微調整戦略を評価する。
本稿では,既存のクエリのセットを知識グラフ上に拡張するためのエンドツーエンドデータ拡張手法を提案する。
また、意味のある変数名やインラインコメントなど、クエリにおける意味的な"キュー"の役割についても検討する。
論文 参考訳(メタデータ) (2024-02-07T07:24:01Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
大きな言語モデル(LLM)は、言語理解において強力な能力を示しており、この課題を解決するために使用することができる。
既存のメソッドは、当初、スキーマ固有の詳細を使わずにLLMを使用してロジックフォームのドラフトを生成することで、この課題を回避している。
そこで本研究では,LLMが文脈内学習を利用してスキーマを直接理解できる簡易なインコンテキスト理解(ICSU)手法を提案する。
論文 参考訳(メタデータ) (2023-10-22T04:19:17Z) - LMGQS: A Large-scale Dataset for Query-focused Summarization [77.6179359525065]
我々は4つの一般的な要約ベンチマークを新しいQFSベンチマークデータセットであるLMGQSに変換する。
我々は最先端の要約モデルを用いてベースラインを確立する。
複数の既存のQFSベンチマークにおいて、最先端のゼロショットと教師付きパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-22T14:53:45Z) - A Lightweight Constrained Generation Alternative for Query-focused
Summarization [8.264410236351111]
クエリ中心の要約(QFS)は、あるクエリの必要な情報を満たすドキュメントの要約を提供することを目的としている。
我々は,最近開発された制約付き世代モデルニューロロジカルデコーディング(NLD)を,現在のQFS方式の代替として活用することを提案する。
本稿では,2つの公開QFSコレクションに対するこのアプローチの有効性を,複雑性を著しく低減した最先端モデルとほぼ同等に示す。
論文 参考訳(メタデータ) (2023-04-23T18:43:48Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Exploring Sequence-to-Sequence Models for SPARQL Pattern Composition [0.5639451539396457]
構造化され、構造化されていないデータとして、インターネットに爆発的な情報が追加され、DBpediaやWikidataのような知識ベースが供給される。
質問回答システムの目的は、正規のクエリを書くことなく、自然言語でそのようなデータにアクセスできるようにすることである。
我々は、長い発話を複雑なSPARQLクエリに変換するための、シーケンス・ツー・シーケンス・モデルが実現可能で有望な選択肢であることを示す。
論文 参考訳(メタデータ) (2020-10-21T11:12:01Z) - Conversational Question Reformulation via Sequence-to-Sequence
Architectures and Pretrained Language Models [56.268862325167575]
本稿では、列列列構造と事前学習言語モデル(PLM)を用いた会話型質問修正(CQR)の実証的研究について述べる。
我々はPLMを利用して、CQRタスクの目的である最大推定におけるトークン・トークン・トークン・トークンの独立性の強い仮定に対処する。
我々は、最近導入されたCANARDデータセットの微調整PLMをドメイン内タスクとして評価し、TREC 2019 CAsT Trackのデータからドメイン外タスクとしてモデルを検証する。
論文 参考訳(メタデータ) (2020-04-04T11:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。