論文の概要: An Empirical Study of Validating Synthetic Data for Text-Based Person Retrieval
- arxiv url: http://arxiv.org/abs/2503.22171v1
- Date: Fri, 28 Mar 2025 06:18:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:29:41.740211
- Title: An Empirical Study of Validating Synthetic Data for Text-Based Person Retrieval
- Title(参考訳): テキストに基づく人物検索のための合成データの検証に関する実証的研究
- Authors: Min Cao, ZiYin Zeng, YuXin Lu, Mang Ye, Dong Yi, Jinqiao Wang,
- Abstract要約: 我々は,テキストベース人検索(TBPR)研究における合成データの可能性を探るため,実証的研究を行った。
本稿では,自動プロンプト構築戦略を導入するクラス間画像生成パイプラインを提案する。
我々は、画像のさらなる編集に生成AIモデルを応用した、クラス内画像拡張パイプラインを開発する。
- 参考スコア(独自算出の注目度): 51.10419281315848
- License:
- Abstract: Data plays a pivotal role in Text-Based Person Retrieval (TBPR) research. Mainstream research paradigm necessitates real-world person images with manual textual annotations for training models, posing privacy-sensitive and labor-intensive issues. Several pioneering efforts explore synthetic data for TBPR but still rely on real data, keeping the aforementioned issues and also resulting in diversity-deficient issue in synthetic datasets, thus impacting TBPR performance. Moreover, these works tend to explore synthetic data for TBPR through limited perspectives, leading to exploration-restricted issue. In this paper, we conduct an empirical study to explore the potential of synthetic data for TBPR, highlighting three key aspects. (1) We propose an inter-class image generation pipeline, in which an automatic prompt construction strategy is introduced to guide generative Artificial Intelligence (AI) models in generating various inter-class images without reliance on original data. (2) We develop an intra-class image augmentation pipeline, in which the generative AI models are applied to further edit the images for obtaining various intra-class images. (3) Building upon the proposed pipelines and an automatic text generation pipeline, we explore the effectiveness of synthetic data in diverse scenarios through extensive experiments. Additionally, we experimentally investigate various noise-robust learning strategies to mitigate the inherent noise in synthetic data. We will release the code, along with the synthetic large-scale dataset generated by our pipelines, which are expected to advance practical TBPR research.
- Abstract(参考訳): データはテキストベースの人検索(TBPR)研究において重要な役割を果たす。
主流研究パラダイムは、トレーニングモデルのための手動のテキストアノテーションで現実世界の人物画像を必要とし、プライバシに敏感で労働集約的な問題を提起する。
いくつかの先駆的な試みは、TBPRの合成データを探究するが、実際のデータに依存し、上記の問題を維持し、合成データセットの多様性に欠ける問題を引き起こし、TBPRのパフォーマンスに影響を及ぼす。
さらに、これらの研究は限定的な視点でTBPRの合成データを探索する傾向にあり、探索制限問題に繋がる。
本稿では,TBPRのための合成データの可能性を探るため,実験的検討を行い,その3つの重要な側面を強調した。
1) クラス間画像生成パイプラインを提案し, 生成的人工知能(AI)モデルを用いて, オリジナルデータに依存することなく, クラス間画像を生成する手法を提案する。
2) クラス内画像獲得のための画像のさらなる編集に生成AIモデルを応用した,クラス内画像拡張パイプラインを開発した。
(3)提案したパイプラインと自動テキスト生成パイプラインに基づいて,多様なシナリオにおける合成データの有効性を検討する。
さらに, 合成データの固有ノイズを軽減するために, 様々なノイズロバスト学習手法を実験的に検討した。
実際のTBPR研究の進展を期待する,パイプラインによって生成された合成大規模データセットとともに,コードを公開します。
関連論文リスト
- Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - Learning from Synthetic Data for Visual Grounding [55.21937116752679]
そこで本研究では,SynGroundが市販のビジョン・アンド・ランゲージモデルのローカライズ能力を向上できることを示す。
SynGroundで生成されたデータは、事前訓練されたALBEFモデルとBLIPモデルのポインティングゲーム精度をそれぞれ4.81%、絶対パーセンテージポイント17.11%向上させる。
論文 参考訳(メタデータ) (2024-03-20T17:59:43Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - On Synthetic Data for Back Translation [66.6342561585953]
逆翻訳(BT)はNTT研究分野において最も重要な技術の一つである。
バックトランスレーションNMTの性能を制御する合成データには,品質と重要性の2つの重要な要素を同定する。
そこで本研究では,BTの性能向上のために,両因子のトレードオフを改善するため,合成データを生成するための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-20T17:24:12Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - Exploiting Multimodal Synthetic Data for Egocentric Human-Object
Interaction Detection in an Industrial Scenario [14.188006024550257]
EgoISM-HOIは,手や物体のアノテーションが豊富な産業環境下で合成されたEHOI画像からなる,新しいマルチモーダルデータセットである。
本研究は,提案手法を事前学習するために合成データを活用することにより,実世界のデータでテストした場合の性能が著しく向上することを示す。
この分野での研究を支援するため、私たちはデータセット、ソースコード、事前トレーニングされたモデルをhttps://iplab.dmi.unict.it/egoism-hoi.comで公開しています。
論文 参考訳(メタデータ) (2023-06-21T09:56:55Z) - FairGen: Fair Synthetic Data Generation [0.3149883354098941]
本稿では,GANアーキテクチャに依存しないより公平な合成データを生成するパイプラインを提案する。
合成データを生成する場合、ほとんどのGANはトレーニングデータに存在するバイアスを増幅するが、これらのバイアスを誘発するサンプルを除去することで、GANは本質的に真の情報的サンプルに重点を置いている、と我々は主張する。
論文 参考訳(メタデータ) (2022-10-24T08:13:47Z) - GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D
LiDAR Segmentation [60.07812405063708]
3Dポイントクラウドセマンティックセグメンテーションは、自動運転に基本である。
文学におけるほとんどのアプローチは、動的シーンを扱う際に、ドメインシフトをどのように扱うかという重要な側面を無視している。
本稿では,本研究分野における最先端技術について述べる。
論文 参考訳(メタデータ) (2022-07-20T09:06:07Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
そこで本研究では,高品質な自然主義的合成隠蔽顔を製造するための2つの手法を提案する。
両手法の有効性とロバスト性を実証的に示す。
我々は,RealOccとRealOcc-Wildという,微細なアノテーションを付加した高精細な実世界の顔データセットを2つ提示する。
論文 参考訳(メタデータ) (2022-05-12T17:03:57Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
衛星画像における低・ゼロサンプル学習を向上させるための新しい合成データ生成および拡張技術を開発した。
合成画像の有効性を検証するために,検出モデルと2段階モデルの訓練を行い,実際の衛星画像上で得られたモデルを評価する。
論文 参考訳(メタデータ) (2021-01-29T22:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。