Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items
- URL: http://arxiv.org/abs/2503.22182v1
- Date: Fri, 28 Mar 2025 07:00:33 GMT
- Title: Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items
- Authors: Jianghao Lin, Peng Du, Jiaqi Liu, Weite Li, Yong Yu, Weinan Zhang, Yang Cao,
- Abstract summary: This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design.<n>We propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion) to capture the users' group-level personalized preferences towards multiple generated candidate images.<n>The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts.
- Score: 41.69406276304483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.
Related papers
- CTR-Driven Advertising Image Generation with Multimodal Large Language Models [53.40005544344148]
We explore the use of Multimodal Large Language Models (MLLMs) for generating advertising images by optimizing for Click-Through Rate (CTR) as the primary objective.<n>To further improve the CTR of generated images, we propose a novel reward model to fine-tune pre-trained MLLMs through Reinforcement Learning (RL)<n>Our method achieves state-of-the-art performance in both online and offline metrics.
arXiv Detail & Related papers (2025-02-05T09:06:02Z) - Personalized Preference Fine-tuning of Diffusion Models [75.22218338096316]
We introduce PPD, a multi-reward optimization objective that aligns diffusion models with personalized preferences.<n>With PPD, a diffusion model learns the individual preferences of a population of users in a few-shot way.<n>Our approach achieves an average win rate of 76% over Stable Cascade, generating images that more accurately reflect specific user preferences.
arXiv Detail & Related papers (2025-01-11T22:38:41Z) - JeDi: Joint-Image Diffusion Models for Finetuning-Free Personalized Text-to-Image Generation [49.997839600988875]
Existing personalization methods rely on finetuning a text-to-image foundation model on a user's custom dataset.
We propose Joint-Image Diffusion (jedi), an effective technique for learning a finetuning-free personalization model.
Our model achieves state-of-the-art generation quality, both quantitatively and qualitatively, significantly outperforming both the prior finetuning-based and finetuning-free personalization baselines.
arXiv Detail & Related papers (2024-07-08T17:59:02Z) - End-to-end multi-modal product matching in fashion e-commerce [0.6047429555885261]
We present a robust multi-modal product matching system in an industry setting.
We show how a human-in-the-loop process can be combined with model-based predictions to achieve near perfect precision.
arXiv Detail & Related papers (2024-03-18T09:12:16Z) - A New Creative Generation Pipeline for Click-Through Rate with Stable
Diffusion Model [8.945197427679924]
Traditional AI-based approaches face the same problem of not considering user information while having limited aesthetic knowledge from designers.
To optimize the results, the generated creatives in traditional methods are then ranked by another module named creative ranking model.
This paper proposes a new automated Creative Generation pipeline for Click-Through Rate (CG4CTR) with the goal of improving CTR during the creative generation stage.
arXiv Detail & Related papers (2024-01-17T03:27:39Z) - ZooPFL: Exploring Black-box Foundation Models for Personalized Federated
Learning [95.64041188351393]
This paper endeavors to solve both the challenges of limited resources and personalization.
We propose a method named ZOOPFL that uses Zeroth-Order Optimization for Personalized Federated Learning.
To reduce the computation costs and enhance personalization, we propose input surgery to incorporate an auto-encoder with low-dimensional and client-specific embeddings.
arXiv Detail & Related papers (2023-10-08T12:26:13Z) - TransAct: Transformer-based Realtime User Action Model for
Recommendation at Pinterest [17.247452803197362]
This paper presents Pinterest's ranking architecture for Homefeed.
We propose TransAct, a sequential model that extracts users' short-term preferences from their realtime activities.
We describe the results of ablation studies, the challenges we faced during productionization, and the outcome of an online A/B experiment.
arXiv Detail & Related papers (2023-05-31T23:45:29Z) - Prompt Evolution for Generative AI: A Classifier-Guided Approach [18.500689885854694]
This paper conceptualizes prompt evolution, evolutionary selection pressure and variation during the generative process to produce better images.
A novelty of our evolutionary algorithm is that the pre-trained generative model gives us implicit mutation operations.
arXiv Detail & Related papers (2023-05-24T14:48:18Z) - PreSizE: Predicting Size in E-Commerce using Transformers [76.33790223551074]
PreSizE is a novel deep learning framework which utilizes Transformers for accurate size prediction.
We demonstrate that PreSizE is capable of achieving superior prediction performance compared to previous state-of-the-art baselines.
As a proof of concept, we demonstrate that size predictions made by PreSizE can be effectively integrated into an existing production recommender system.
arXiv Detail & Related papers (2021-05-04T15:23:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.