Flippi: End To End GenAI Assistant for E-Commerce
- URL: http://arxiv.org/abs/2507.05788v2
- Date: Fri, 11 Jul 2025 08:00:51 GMT
- Title: Flippi: End To End GenAI Assistant for E-Commerce
- Authors: Anand A. Rajasekar, Praveen Tangarajan, Anjali Nainani, Amogh Batwal, Vinay Rao Dandin, Anusua Trivedi, Ozan Ersoy,
- Abstract summary: This paper introduces Flippi-a cutting-edge, end-to-end conversational assistant powered by large language models (LLMs)<n> Flippi addresses the challenges posed by the vast and often overwhelming product landscape.<n>By accommodating both objective and subjective user requirements, Flippi delivers a personalized shopping experience.
- Score: 1.3060095849496556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of conversational assistants has fundamentally reshaped user interactions with digital platforms. This paper introduces Flippi-a cutting-edge, end-to-end conversational assistant powered by large language models (LLMs) and tailored for the e-commerce sector. Flippi addresses the challenges posed by the vast and often overwhelming product landscape, enabling customers to discover products more efficiently through natural language dialogue. By accommodating both objective and subjective user requirements, Flippi delivers a personalized shopping experience that surpasses traditional search methods. This paper details how Flippi interprets customer queries to provide precise product information, leveraging advanced NLP techniques such as Query Reformulation, Intent Detection, Retrieval-Augmented Generation (RAG), Named Entity Recognition (NER), and Context Reduction. Flippi's unique capability to identify and present the most attractive offers on an e-commerce site is also explored, demonstrating how it empowers users to make cost-effective decisions. Additionally, the paper discusses Flippi's comparative analysis features, which help users make informed choices by contrasting product features, prices, and other relevant attributes. The system's robust architecture is outlined, emphasizing its adaptability for integration across various e-commerce platforms and the technological choices underpinning its performance and accuracy. Finally, a comprehensive evaluation framework is presented, covering performance metrics, user satisfaction, and the impact on customer engagement and conversion rates. By bridging the convenience of online shopping with the personalized assistance traditionally found in physical stores, Flippi sets a new standard for customer satisfaction and engagement in the digital marketplace.
Related papers
- Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action [12.637812936971049]
We present Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation and persuasion within a unified conversational framework.<n>We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation.
arXiv Detail & Related papers (2025-03-28T15:49:52Z) - Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items [41.69406276304483]
This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design.<n>We propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion) to capture the users' group-level personalized preferences towards multiple generated candidate images.<n>The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts.
arXiv Detail & Related papers (2025-03-28T07:00:33Z) - AI-Driven Sentiment Analytics: Unlocking Business Value in the E-Commerce Landscape [0.0]
This paper presents an AI-driven sentiment analysis system designed specifically for e-commerce applications.<n>Our approach integrates traditional machine learning techniques with modern deep learning models, allowing for a more nuanced understanding of customer sentiment.<n> Experimental results show that our system outperforms standard sentiment analysis methods, achieving an accuracy of 89.7% on diverse, large-scale datasets.
arXiv Detail & Related papers (2025-03-20T18:56:22Z) - What should I wear to a party in a Greek taverna? Evaluation for Conversational Agents in the Fashion Domain [1.6549387146138885]
Large language models (LLMs) are poised to revolutionize the domain of online fashion retail.
We create a multilingual evaluation dataset of 4k conversations between customers and a fashion assistant in a large e-commerce fashion platform.
arXiv Detail & Related papers (2024-08-13T11:11:27Z) - Leveraging Large Language Models for Enhanced Product Descriptions in
eCommerce [6.318353155416729]
This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model.
We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms.
Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions.
arXiv Detail & Related papers (2023-10-24T00:55:14Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
We propose a framework relying solely on chat-based customer support interactions for predicting the recommendation decision of individual users.
For our case study, we analyzed a total number of 16.4k users and 48.7k customer support conversations within the financial vertical of a large e-commerce company in Latin America.
Our results show that, with respective feature interpretability, it is possible to predict the likelihood of a user to recommend a product or service, based solely on the message-wise sentiment evolution of their CS conversations in a fully automated way.
arXiv Detail & Related papers (2022-11-08T00:43:36Z) - Automatic Controllable Product Copywriting for E-Commerce [58.97059802658354]
We deploy an E-commerce Prefix-based Controllable Copywriting Generation into the JD.com e-commerce recommendation platform.
We conduct experiments to validate the effectiveness of the proposed EPCCG.
We introduce the deployed architecture which cooperates with the EPCCG into the real-time JD.com e-commerce recommendation platform.
arXiv Detail & Related papers (2022-06-21T04:18:52Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Product Question Answering (PQA) on E-Commerce platforms has attracted increasing attention as it can act as an intelligent online shopping assistant.
It is insufficient to provide the same "completely summarized" answer to all customers, since many customers are more willing to see personalized answers with customized information only for themselves.
We propose a novel multi-perspective user preference model for generating personalized answers in PQA.
arXiv Detail & Related papers (2021-12-27T07:51:49Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - Dual Side Deep Context-aware Modulation for Social Recommendation [50.59008227281762]
We propose a novel graph neural network to model the social relation and collaborative relation.
On top of high-order relations, a dual side deep context-aware modulation is introduced to capture the friends' information and item attraction.
arXiv Detail & Related papers (2021-03-16T11:08:30Z) - User-Inspired Posterior Network for Recommendation Reason Generation [53.035224183349385]
Recommendation reason generation plays a vital role in attracting customers' attention as well as improving user experience.
We propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users' interests.
Experimental results show that our model is superior to traditional generative models.
arXiv Detail & Related papers (2021-02-16T02:08:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.