論文の概要: Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need
- arxiv url: http://arxiv.org/abs/2503.22193v1
- Date: Fri, 28 Mar 2025 07:23:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:29:38.199510
- Title: Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need
- Title(参考訳): トランスダクティブFew-Shot学習のためのUnbiased Max-Min Embedding Classification: クラスタリングと分類がすべて必要である
- Authors: Yang Liu, Feixiang Liu, Jiale Du, Xinbo Gao, Jungong Han,
- Abstract要約: わずかなショットラーニングにより、モデルがいくつかのラベル付き例から一般化できる。
本稿では,Unbiased Max-Min Embedding Classification (UMMEC)法を提案する。
本手法は最小ラベル付きデータを用いて分類性能を著しく向上させ, 注釈付きLの最先端化を推し進める。
- 参考スコア(独自算出の注目度): 83.10178754323955
- License:
- Abstract: Convolutional neural networks and supervised learning have achieved remarkable success in various fields but are limited by the need for large annotated datasets. Few-shot learning (FSL) addresses this limitation by enabling models to generalize from only a few labeled examples. Transductive few-shot learning (TFSL) enhances FSL by leveraging both labeled and unlabeled data, though it faces challenges like the hubness problem. To overcome these limitations, we propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning through three innovative contributions. First, we introduce a decentralized covariance matrix to mitigate the hubness problem, ensuring a more uniform distribution of embeddings. Second, our method combines local alignment and global uniformity through adaptive weighting and nonlinear transformation, balancing intra-class clustering with inter-class separation. Third, we employ a Variational Sinkhorn Few-Shot Classifier to optimize the distances between samples and class prototypes, enhancing classification accuracy and robustness. These combined innovations allow the UMMEC method to achieve superior performance with minimal labeled data. Our UMMEC method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in TFSL.
- Abstract(参考訳): 畳み込みニューラルネットワークと教師付き学習は、様々な分野で顕著な成功を収めてきたが、大きな注釈付きデータセットの必要性によって制限されている。
FSL(Few-shot Learning)は、いくつかのラベル付き例からモデルを一般化可能にすることで、この制限に対処する。
Transductive few-shot Learning (TFSL)は、ラベル付きデータとラベルなしデータの両方を活用することで、FSLを強化します。
これらの制約を克服するために,3つの革新的なコントリビューションを通じて,数ショット学習における重要な課題に対処するUnbiased Max-Min Embedding Classification (UMMEC)法を提案する。
まず、ハブ性問題を緩和し、埋め込みのより均一な分布を確保するために、分散化された共分散行列を導入する。
第2に,適応重み付けと非線形変換により局所的アライメントと大域的均一性を組み合わせ,クラス内クラスタリングとクラス間分離のバランスをとる。
第3に、サンプルとクラスプロトタイプ間の距離を最適化し、分類精度とロバスト性を向上するために、変分シンクホーンフーショット分類器を用いる。
これらの複合的な革新により、UMMEC法は最小ラベル付きデータで優れた性能を達成することができる。
UMMEC法は最小ラベル付きデータによる分類性能を大幅に向上させ,TFSLの最先端化を推し進める。
関連論文リスト
- An Enhanced Classification Method Based on Adaptive Multi-Scale Fusion for Long-tailed Multispectral Point Clouds [67.96583737413296]
長距離分布を持つMPCに対する適応的マルチスケール融合に基づく拡張型分類法を提案する。
トレーニングセット生成段階では、スパースラベル付きデータセットからトレーニングサンプルを確実に生成するグリッドバランスサンプリング戦略が設計されている。
特徴学習の段階では,異なるスケールの土地被覆の浅い特徴を融合させるため,マルチスケールの特徴融合モジュールが提案されている。
論文 参考訳(メタデータ) (2024-12-16T03:21:20Z) - Ensemble Methods for Sequence Classification with Hidden Markov Models [8.241486511994202]
隠れマルコフモデル(HMM)のためのアンサンブル手法を用いたシーケンス分類への軽量なアプローチを提案する。
HMMは、その単純さ、解釈可能性、効率性のために、不均衡または小さいデータセットを持つシナリオにおいて、大きな利点を提供する。
アンサンブルに基づくスコアリング手法により,任意の長さのシーケンスの比較が可能となり,不均衡なデータセットの性能が向上する。
論文 参考訳(メタデータ) (2024-09-11T20:59:32Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
我々は、セレクタ分類器アーキテクチャを備えた新しいDNNトレーニングおよび推論フレームワークであるDiTMoSを紹介する。
弱いモデルの合成は高い多様性を示すことができ、それらの結合は精度の上限を大幅に高めることができる。
我々は,Nucleo STM32F767ZIボード上にDiTMoSをデプロイし,人間の活動認識,キーワードスポッティング,感情認識のための時系列データセットに基づいて評価する。
論文 参考訳(メタデータ) (2024-03-14T02:11:38Z) - P$^2$OT: Progressive Partial Optimal Transport for Deep Imbalanced
Clustering [16.723646401890495]
深層クラスタリングのための新しい擬似ラベル学習フレームワークを提案する。
本フレームワークは,高信頼度サンプルから不均衡を意識した擬似ラベルと学習を生成する。
CIFAR100を含む様々なデータセットの実験は,本手法の優位性を実証している。
論文 参考訳(メタデータ) (2024-01-17T15:15:46Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - An Adaptive Plug-and-Play Network for Few-Shot Learning [12.023266104119289]
少数のサンプルから学んだ後、新しいサンプルを分類するモデルが必要である。
ディープネットワークと複雑なメトリクスはオーバーフィッティングを引き起こす傾向があり、パフォーマンスをさらに改善することは困難である。
プラグアンドプレイ型モデル適応型リサイザ (MAR) とアダプティブ類似度測定器 (ASM) をその他の損失なく提案する。
論文 参考訳(メタデータ) (2023-02-18T13:25:04Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。