Privacy-Preserving Secure Neighbor Discovery for Wireless Networks
- URL: http://arxiv.org/abs/2503.22232v2
- Date: Mon, 31 Mar 2025 17:56:29 GMT
- Title: Privacy-Preserving Secure Neighbor Discovery for Wireless Networks
- Authors: Ahmed Mohamed Hussain, Panos Papadimitratos,
- Abstract summary: Traditional Neighbor Discovery (ND) and Secure Neighbor Discovery (SND) are key elements for network functionality.<n>We present a novel Privacy-Preserving Secure Neighbor Discovery (PP-SND) protocol, enabling devices to perform SND without revealing their actual identities and locations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional Neighbor Discovery (ND) and Secure Neighbor Discovery (SND) are key elements for network functionality. SND is a hard problem, satisfying not only typical security properties (authentication, integrity) but also verification of direct communication, which involves distance estimation based on time measurements and device coordinates. Defeating relay attacks, also known as "wormholes", leading to stealthy Byzantine links and significant degradation of communication and adversarial control, is key in many wireless networked systems. However, SND is not concerned with privacy; it necessitates revealing the identity and location of the device(s) participating in the protocol execution. This can be a deterrent for deployment, especially involving user-held devices in the emerging Internet of Things (IoT) enabled smart environments. To address this challenge, we present a novel Privacy-Preserving Secure Neighbor Discovery (PP-SND) protocol, enabling devices to perform SND without revealing their actual identities and locations, effectively decoupling discovery from the exposure of sensitive information. We use Homomorphic Encryption (HE) for computing device distances without revealing their actual coordinates, as well as employing a pseudonymous device authentication to hide identities while preserving communication integrity. PP-SND provides SND [1] along with pseudonymity, confidentiality, and unlinkability. Our presentation here is not specific to one wireless technology, and we assess the performance of the protocols (cryptographic overhead) on a Raspberry Pi 4 and provide a security and privacy analysis.
Related papers
- Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy [51.028047763426265]
Semantic communication (SemCom) improves transmission efficiency by focusing on task-relevant information.
transmitting semantic-rich data over insecure channels introduces privacy risks.
This paper proposes a novel SemCom framework that integrates differential privacy mechanisms to protect sensitive semantic features.
arXiv Detail & Related papers (2025-04-23T08:42:44Z) - Your Signal, Their Data: An Empirical Privacy Analysis of Wireless-scanning SDKs in Android [3.830984415546144]
Mobile apps frequently use Bluetooth Low Energy (BLE) and WiFi scanning permissions to discover nearby devices.<n>Wireless interfaces also serve as a covert proxy for geolocation data, enabling continuous user tracking and profiling.<n>We conduct the first systematic analysis of 52 wireless-scanning SDKs, revealing their data collection practices and privacy risks.
arXiv Detail & Related papers (2025-03-19T14:15:02Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
Next-generation networks aim for comprehensive connectivity, interconnecting humans, machines, devices, and systems seamlessly.
To address this challenge, the Zero Trust (ZT) paradigm emerges as a key method for safeguarding network integrity and data confidentiality.
This work introduces EPS-CNN, a novel deep-learning-based wireless device identification framework.
arXiv Detail & Related papers (2024-02-08T00:23:42Z) - MIMOCrypt: Multi-User Privacy-Preserving Wi-Fi Sensing via MIMO Encryption [9.602413325195528]
Wi-Fi signals may help realize low-cost and non-invasive human sensing, yet they can also be exploited by eavesdroppers to capture private information.
We propose a privacy-preserving Wi-Fi sensing framework to support realistic multi-user scenarios.
arXiv Detail & Related papers (2023-09-01T04:45:57Z) - Federated Graph Learning for Low Probability of Detection in Wireless
Ad-Hoc Networks [36.82926581689718]
Low probability of detection (LPD) has recently emerged as a means to enhance the privacy and security of wireless networks.
We study a privacy-preserving and distributed framework based on graph neural networks to minimise the detectability of a wireless ad-hoc network as a whole.
arXiv Detail & Related papers (2023-06-01T20:56:02Z) - DensePose From WiFi [86.61881052177228]
We develop a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions.
Our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches.
arXiv Detail & Related papers (2022-12-31T16:48:43Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
An end-to-end WiFi signal neural network (SNN) is proposed to enable WiFi-only sensing in both line-of-sight and non-line-of-sight scenarios.
Especially, the 3D convolution module is able to explore thetemporal continuity of WiFi signals, and the feature self-attention module can explicitly maintain dominant features.
arXiv Detail & Related papers (2022-06-20T16:03:45Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
A new WiFi-based and video-based neural network (WiNN) is proposed to improve the robustness of activity recognition.
Our results show that WiVi data set satisfies the primary demand and all three branches in the proposed pipeline keep more than $80%$ of activity recognition accuracy.
arXiv Detail & Related papers (2022-05-24T10:49:11Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
Google and Apple have jointly provided an API for exposure notification in order to implement decentralized contract tracing apps using Bluetooth Low Energy.
We demonstrate that in real-world scenarios the GAP design is vulnerable to (i) profiling and possibly de-anonymizing persons, and (ii) relay-based wormhole attacks that basically can generate fake contacts.
arXiv Detail & Related papers (2020-06-10T16:05:05Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.