Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy
- URL: http://arxiv.org/abs/2504.18581v1
- Date: Wed, 23 Apr 2025 08:42:44 GMT
- Title: Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy
- Authors: Weixuan Chen, Shunpu Tang, Qianqian Yang, Zhiguo Shi, Dusit Niyato,
- Abstract summary: Semantic communication (SemCom) improves transmission efficiency by focusing on task-relevant information.<n> transmitting semantic-rich data over insecure channels introduces privacy risks.<n>This paper proposes a novel SemCom framework that integrates differential privacy mechanisms to protect sensitive semantic features.
- Score: 51.028047763426265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic communication (SemCom) improves transmission efficiency by focusing on task-relevant information. However, transmitting semantic-rich data over insecure channels introduces privacy risks. This paper proposes a novel SemCom framework that integrates differential privacy (DP) mechanisms to protect sensitive semantic features. This method employs the generative adversarial network (GAN) inversion technique to extract disentangled semantic features and uses neural networks (NNs) to approximate the DP application and removal processes, effectively mitigating the non-invertibility issue of DP. Additionally, an NN-based encryption scheme is introduced to strengthen the security of channel inputs. Simulation results demonstrate that the proposed approach effectively prevents eavesdroppers from reconstructing sensitive information by generating chaotic or fake images, while ensuring high-quality image reconstruction for legitimate users. The system exhibits robust performance across various privacy budgets and channel conditions, achieving an optimal balance between privacy protection and reconstruction fidelity.
Related papers
- Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.<n>We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.<n>We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Privacy-Preserving Diffusion Model Using Homomorphic Encryption [5.282062491549009]
We introduce a privacy-preserving stable diffusion framework leveraging homomorphic encryption, called HE-Diffusion.
We propose a novel min-distortion method that enables efficient partial image encryption.
We successfully implement HE-based privacy-preserving stable diffusion inference.
arXiv Detail & Related papers (2024-03-09T04:56:57Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
This paper proposes a GAI-aided SemCom system with multi-model prompts for accurate content decoding.
In response to security concerns, we introduce the application of covert communications aided by a friendly jammer.
arXiv Detail & Related papers (2023-09-05T23:24:56Z) - SemProtector: A Unified Framework for Semantic Protection in Deep Learning-based Semantic Communication Systems [51.97204522852634]
We present a unified framework that aims to secure an online semantic communications system with three semantic protection modules.
Specifically, these protection modules are able to encrypt semantics to be transmitted by an encryption method, mitigate privacy risks from wireless channels by a perturbation mechanism, and calibrate distorted semantics at the destination.
Our framework enables an existing online SC system to dynamically assemble the above three pluggable modules to meet customized semantic protection requirements.
arXiv Detail & Related papers (2023-09-04T06:34:43Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
Federated learning (FL) is a privacy-preserving collaborative learning framework.
Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm.
We propose a communication-efficient FL training algorithm with differential privacy guarantee.
arXiv Detail & Related papers (2023-08-07T06:07:04Z) - Secure Deep-JSCC Against Multiple Eavesdroppers [13.422085141752468]
We propose an end-to-end (E2E) learning-based approach for secure communication against multiple eavesdroppers.
We implement deep neural networks (DNNs) to realize a data-driven secure communication scheme.
Our experiments show that employing the proposed secure neural encoding can decrease the adversarial accuracy by 28%.
arXiv Detail & Related papers (2023-08-05T14:40:35Z) - Differentially Private Decentralized Optimization with Relay Communication [1.2695958417031445]
We introduce a new measure: Privacy Leakage Frequency (PLF), which reveals the relationship between communication and privacy leakage of algorithms.<n>A novel differentially private decentralized primal--dual algorithm named DP-RECAL is proposed to take advantage of operator splitting method and relay communication mechanism to experience less PLF.
arXiv Detail & Related papers (2022-12-21T09:05:36Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.