Machine Learning Models for Soil Parameter Prediction Based on Satellite, Weather, Clay and Yield Data
- URL: http://arxiv.org/abs/2503.22276v1
- Date: Fri, 28 Mar 2025 09:44:32 GMT
- Title: Machine Learning Models for Soil Parameter Prediction Based on Satellite, Weather, Clay and Yield Data
- Authors: Calvin Kammerlander, Viola Kolb, Marinus Luegmair, Lou Scheermann, Maximilian Schmailzl, Marco Seufert, Jiayun Zhang, Denis Dalic, Torsten Schön,
- Abstract summary: The AgroLens project endeavors to develop Machine Learning-based methodologies to predict soil nutrient levels without reliance on laboratory tests.<n>The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery.<n>Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction.
- Score: 1.546169961420396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient nutrient management and precise fertilization are essential for advancing modern agriculture, particularly in regions striving to optimize crop yields sustainably. The AgroLens project endeavors to address this challenge by develop ing Machine Learning (ML)-based methodologies to predict soil nutrient levels without reliance on laboratory tests. By leveraging state of the art techniques, the project lays a foundation for acionable insights to improve agricultural productivity in resource-constrained areas, such as Africa. The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery to estimate key soil properties, including phosphorus, potassium, nitrogen, and pH levels. This model is then enhanced by integrating supplementary features, such as weather data, harvest rates, and Clay AI-generated embeddings. This report details the methodological framework, data preprocessing strategies, and ML pipelines employed in this project. Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction. Results showcase robust model performance, with root mean square error values meeting stringent accuracy thresholds. By establishing a reproducible and scalable pipeline for soil nutrient prediction, this research paves the way for transformative agricultural applications, including precision fertilization and improved resource allocation in underresourced regions like Africa.
Related papers
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - A Novel Fusion of Optical and Radar Satellite Data for Crop Phenology Estimation using Machine Learning and Cloud Computing [0.0]
In the era of big Earth observation data ubiquity, attempts have been made to accurately predict crop phenology based on Remote Sensing data.
Here, we estimate phenological developments for eight major crops and 13 phenological stages across Germany at 30m scale using a novel framework.
arXiv Detail & Related papers (2024-08-16T13:44:35Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Machine Learning-based Nutrient Application's Timeline Recommendation
for Smart Agriculture: A Large-Scale Data Mining Approach [0.0]
Inaccurate fertiliser application decisions can lead to costly consequences, hinder food production, and cause environmental harm.
We propose a solution to predict nutrient application by determining required fertiliser quantities for an entire season.
The proposed solution recommends adjusting fertiliser amounts based on weather conditions and soil characteristics to promote cost-effective and environmentally friendly agriculture.
arXiv Detail & Related papers (2023-10-18T15:37:19Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - A Deep Neural Network Approach for Crop Selection and Yield Prediction
in Bangladesh [0.0]
This paper shows the best way of crop selection and yield prediction in minimum cost and effort.
In this paper, we have suggested using the deep neural network for agricultural crop selection and yield prediction.
arXiv Detail & Related papers (2021-08-06T22:25:46Z) - Total Nitrogen Estimation in Agricultural Soils via Aerial Multispectral
Imaging and LIBS [0.6875312133832077]
Most existing methods to measure soil health indicators (SHIs) are in-lab wet chemistry or spectroscopy-based methods.
We develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing (UMS) solution to estimate total nitrogen (TN) of the soil.
arXiv Detail & Related papers (2021-07-06T02:37:30Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z) - UAV and Machine Learning Based Refinement of a Satellite-Driven
Vegetation Index for Precision Agriculture [0.8399688944263843]
This paper presents a novel satellite imagery refinement framework based on a deep learning technique.
It exploits information properly derived from high resolution images acquired by unmanned aerial vehicle (UAV) airborne multispectral sensors.
A vineyard in Serralunga d'Alba (Northern Italy) was chosen as a case study for validation purposes.
arXiv Detail & Related papers (2020-04-29T18:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.