Anticipatory Understanding of Resilient Agriculture to Climate
- URL: http://arxiv.org/abs/2411.05219v2
- Date: Mon, 11 Nov 2024 14:17:13 GMT
- Title: Anticipatory Understanding of Resilient Agriculture to Climate
- Authors: David Willmes, Nick Krall, James Tanis, Zachary Terner, Fernando Tavares, Chris Miller, Joe Haberlin III, Matt Crichton, Alexander Schlichting,
- Abstract summary: We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
- Score: 66.008020515555
- License:
- Abstract: With billions of people facing moderate or severe food insecurity, the resilience of the global food supply will be of increasing concern due to the effects of climate change and geopolitical events. In this paper we describe a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system. While we feel that the methods are adaptable to other regions of the world, we focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population. We present a quantitative analysis of deep learning domain adaptation methods for wheat farm identification based on curated remote sensing data from France. We model climate change impacts on crop yields using the existing crop yield modeling tool WOFOST and we identify key drivers of crop simulation error using a longitudinal penalized functional regression. A description of a system dynamics model of the food distribution system in India is also presented, along with results of food insecurity identification based on seeding this model with the predicted crop yields.
Related papers
- VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting [58.12667617617306]
We propose VegeDiff for the geospatial vegetation forecasting task.
VegeDiff is the first to employ a diffusion model to probabilistically capture the uncertainties in vegetation change processes.
By capturing the uncertainties in vegetation changes and modeling the complex influence of relevant variables, VegeDiff outperforms existing deterministic methods.
arXiv Detail & Related papers (2024-07-17T14:15:52Z) - Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
We focus on the task of crop yield prediction, specifically for soybean, wheat, and rapeseed crops in Argentina, Uruguay, and Germany.
Our goal is to develop and explain predictive models for these crops, using a large dataset of satellite images, additional data modalities, and crop yield maps.
For model explainability, we utilize feature attribution methods to quantify input feature contributions, identify critical growth stages, analyze yield variability at the field level, and explain less accurate predictions.
arXiv Detail & Related papers (2024-07-11T08:23:46Z) - A Machine Learning Approach for Crop Yield and Disease Prediction Integrating Soil Nutrition and Weather Factors [0.0]
The development of an intelligent agricultural decision-supporting system for crop selection and disease forecasting in Bangladesh is the main objective of this work.
The recommended approach uses a variety of datasets on the production of crops, soil conditions, agro-meteorological regions, crop disease, and meteorological factors.
arXiv Detail & Related papers (2024-03-28T09:57:50Z) - Forecasting trends in food security with real time data [0.0]
We present a quantitative methodology to forecast levels of food consumption for 60 consecutive days, at the sub-national level, in four countries: Mali, Nigeria, Syria, and Yemen.
The methodology is built on publicly available data from the World Food Programme's global hunger monitoring system.
arXiv Detail & Related papers (2023-12-01T14:42:37Z) - Revolutionizing Global Food Security: Empowering Resilience through
Integrated AI Foundation Models and Data-Driven Solutions [8.017557640367938]
This paper explores the integration of AI foundation models across various food security applications.
We investigate their utilization in crop type mapping, cropland mapping, field delineation and crop yield prediction.
arXiv Detail & Related papers (2023-10-31T09:15:35Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.