論文の概要: RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations
- arxiv url: http://arxiv.org/abs/2503.22285v1
- Date: Fri, 28 Mar 2025 10:01:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 19:09:59.654718
- Title: RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations
- Title(参考訳): RUNA:マルチモーダル表現の局所的不確実性アライメントによるオブジェクトレベルのアウト・オブ・ディストリビューション検出
- Authors: Bin Zhang, Jinggang Chen, Xiaoyang Qu, Guokuan Li, Kai Lu, Jiguang Wan, Jing Xiao, Jianzong Wang,
- Abstract要約: RUNAは、アウト・オブ・ディストリビューション(OOD)オブジェクトを検出するための新しいフレームワークである。
これは、OODオブジェクトとIDを効果的に区別するために、地域不確実性アライメント機構を使用する。
実験の結果,RUNAはオブジェクトレベルのOOD検出において最先端の手法を大幅に上回っていることがわかった。
- 参考スコア(独自算出の注目度): 33.971901643313856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling object detectors to recognize out-of-distribution (OOD) objects is vital for building reliable systems. A primary obstacle stems from the fact that models frequently do not receive supervisory signals from unfamiliar data, leading to overly confident predictions regarding OOD objects. Despite previous progress that estimates OOD uncertainty based on the detection model and in-distribution (ID) samples, we explore using pre-trained vision-language representations for object-level OOD detection. We first discuss the limitations of applying image-level CLIP-based OOD detection methods to object-level scenarios. Building upon these insights, we propose RUNA, a novel framework that leverages a dual encoder architecture to capture rich contextual information and employs a regional uncertainty alignment mechanism to distinguish ID from OOD objects effectively. We introduce a few-shot fine-tuning approach that aligns region-level semantic representations to further improve the model's capability to discriminate between similar objects. Our experiments show that RUNA substantially surpasses state-of-the-art methods in object-level OOD detection, particularly in challenging scenarios with diverse and complex object instances.
- Abstract(参考訳): 物流外物(OOD)を認識するための物体検出器の導入は、信頼性の高いシステムを構築する上で不可欠である。
主な障害は、モデルがよく不慣れなデータから監視信号を受け取らないという事実から来ており、OODオブジェクトに関する過度に確実な予測をもたらす。
検出モデルと分布内(ID)サンプルに基づいてOODの不確かさを推定する以前の進歩にもかかわらず、対象レベルのOOD検出に事前訓練された視覚言語表現を用いて検討する。
まず、画像レベルのCLIPに基づくOOD検出手法をオブジェクトレベルのシナリオに適用する際の限界について論じる。
これらの知見に基づいて、我々は、二重エンコーダアーキテクチャを利用してリッチなコンテキスト情報をキャプチャする新しいフレームワークRUNAを提案し、OODオブジェクトとIDを効果的に区別するために、地域不確実性アライメント機構を採用している。
我々は、類似したオブジェクトを識別するモデルの能力をさらに向上するために、領域レベルのセマンティック表現を整列させる、数ショットの微調整アプローチを導入する。
実験の結果、RUNAはオブジェクトレベルのOOD検出において、特に多種多様な複雑なオブジェクトインスタンスを持つ挑戦シナリオにおいて、最先端の手法を大幅に上回っていることがわかった。
関連論文リスト
- VisTa: Visual-contextual and Text-augmented Zero-shot Object-level OOD Detection [22.200900846112805]
ゼロショットオブジェクトレベルのOOD検出にCLIPを適用する新しい手法を提案する。
本手法は,重要な文脈情報を保存し,IDとOODオブジェクトを区別する能力を向上させる。
論文 参考訳(メタデータ) (2025-03-28T10:08:17Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - Detecting Out-of-Distribution Through the Lens of Neural Collapse [7.04686607977352]
Out-of-Distribution (OOD) 検出は安全なデプロイメントに不可欠である。
ニューラル・コラプス現象に触発されて,我々は多目的かつ効率的なOOD検出法を提案する。
論文 参考訳(メタデータ) (2023-11-02T05:18:28Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
大きな言語モデル(LLM)は豊富な世界の知識をエンコードし、クラスごとに記述的な特徴を生成するよう促すことができる。
本稿では,LLMの選択的生成によるOOD検出性能向上のための世界知識の適用を提案する。
論文 参考訳(メタデータ) (2023-10-12T04:14:28Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - Detecting Out-of-distribution Objects Using Neuron Activation Patterns [0.0]
物体検出装置(NAPTRON)における分布外サンプル検出のためのニューロン活性化PaTteRnsを導入する。
提案手法は,ID(In-distribution)のパフォーマンスに影響を与えることなく,最先端の手法よりも優れている。
OODオブジェクト検出のための最大のオープンソースベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-31T06:41:26Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - Out-of-Domain Intent Detection Considering Multi-Turn Dialogue Contexts [91.43701971416213]
我々は,OODインテント検出タスクにおけるマルチターンコンテキストをモデル化するためのコンテキスト認識型OODインテント検出(Caro)フレームワークを提案する。
CaroはF1-OODスコアを29%以上改善することで、マルチターンOOD検出タスクの最先端性能を確立している。
論文 参考訳(メタデータ) (2023-05-05T01:39:21Z) - Improving Out-of-Distribution Detection with Disentangled Foreground and Background Features [23.266183020469065]
本稿では,IDトレーニングサンプルから前景と背景の特徴を密接な予測手法によって切り離す新しいフレームワークを提案する。
これは、様々な既存のOOD検出メソッドとシームレスに組み合わせられる汎用フレームワークである。
論文 参考訳(メタデータ) (2023-03-15T16:12:14Z) - YolOOD: Utilizing Object Detection Concepts for Multi-Label
Out-of-Distribution Detection [25.68925703896601]
YolOODは、オブジェクト検出領域の概念を利用して、マルチラベル分類タスクでOOD検出を行う方法である。
提案手法を最先端のOOD検出手法と比較し,OODベンチマークデータセットの総合的なスイートにおいて,YolOODがこれらの手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-12-05T07:52:08Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。