WMCopier: Forging Invisible Image Watermarks on Arbitrary Images
- URL: http://arxiv.org/abs/2503.22330v2
- Date: Sun, 18 May 2025 14:52:04 GMT
- Title: WMCopier: Forging Invisible Image Watermarks on Arbitrary Images
- Authors: Ziping Dong, Chao Shuai, Zhongjie Ba, Peng Cheng, Zhan Qin, Qinglong Wang, Kui Ren,
- Abstract summary: We propose WMCopier, an effective watermark forgery attack that operates without requiring prior knowledge of or access to the target watermarking algorithm.<n>Our approach first models the target watermark distribution using an unconditional diffusion model, and then seamlessly embeds the target watermark into a non-watermarked image.<n> Experimental results demonstrate that WMCopier effectively deceives both open-source and closed-source watermark systems.
- Score: 21.17890218813236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Invisible Image Watermarking is crucial for ensuring content provenance and accountability in generative AI. While Gen-AI providers are increasingly integrating invisible watermarking systems, the robustness of these schemes against forgery attacks remains poorly characterized. This is critical, as forging traceable watermarks onto illicit content leads to false attribution, potentially harming the reputation and legal standing of Gen-AI service providers who are not responsible for the content. In this work, we propose WMCopier, an effective watermark forgery attack that operates without requiring any prior knowledge of or access to the target watermarking algorithm. Our approach first models the target watermark distribution using an unconditional diffusion model, and then seamlessly embeds the target watermark into a non-watermarked image via a shallow inversion process. We also incorporate an iterative optimization procedure that refines the reconstructed image to further trade off the fidelity and forgery efficiency. Experimental results demonstrate that WMCopier effectively deceives both open-source and closed-source watermark systems (e.g., Amazon's system), achieving a significantly higher success rate than existing methods. Additionally, we evaluate the robustness of forged samples and discuss the potential defenses against our attack.
Related papers
- Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models [50.73220224678009]
Watermarking can be used to verify the origin of synthetic images generated by artificial intelligence models.<n>Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial techniques.<n>In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery.<n>Our approach significantly broadens the scope of attacks, presenting a greater challenge to the security of current watermarking techniques.
arXiv Detail & Related papers (2025-06-06T12:08:02Z) - Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models [66.54457339638004]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.<n>We propose a diffusion model watermarking method tailored for real-world deployment.<n>Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness.
arXiv Detail & Related papers (2025-04-21T11:18:16Z) - SEAL: Semantic Aware Image Watermarking [26.606008778795193]
We propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark.<n>The key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing.<n>Our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.
arXiv Detail & Related papers (2025-03-15T15:29:05Z) - Robust Watermarks Leak: Channel-Aware Feature Extraction Enables Adversarial Watermark Manipulation [21.41643665626451]
We propose an attack framework that extracts leakage of watermark patterns using a pre-trained vision model.
Unlike prior works requiring massive data or detector access, our method achieves both forgery and detection evasion with a single watermarked image.
Our work exposes the robustness-stealthiness paradox: current "robust" watermarks sacrifice security for distortion resistance, providing insights for future watermark design.
arXiv Detail & Related papers (2025-02-10T12:55:08Z) - ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
Existing watermarking methods face the challenge of balancing robustness and concealment.
This paper introduces a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks.
Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering.
arXiv Detail & Related papers (2024-11-06T12:14:23Z) - An Undetectable Watermark for Generative Image Models [65.31658824274894]
We present the first undetectable watermarking scheme for generative image models.<n>In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric.<n>Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code.
arXiv Detail & Related papers (2024-10-09T18:33:06Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
Existing methods face the dilemma of image quality and watermark robustness.
Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression.
We propose Latent Watermark, which injects and detects watermarks in the latent diffusion space.
arXiv Detail & Related papers (2024-03-30T03:19:50Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
We analyze the robustness of various AI-image detectors including watermarking and deepfake detectors.
We show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images identified as watermarked ones.
arXiv Detail & Related papers (2023-09-29T18:30:29Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisible watermarks safeguard images' copyrights by embedding hidden messages only detectable by owners.
We propose a family of regeneration attacks to remove these invisible watermarks.
The proposed attack method first adds random noise to an image to destroy the watermark and then reconstructs the image.
arXiv Detail & Related papers (2023-06-02T23:29:28Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
We propose a certifiable watermarking method for deep learning models.
We show that our watermark is guaranteed to be unremovable unless the model parameters are changed by more than a certain l2 threshold.
Our watermark is also empirically more robust compared to previous watermarking methods.
arXiv Detail & Related papers (2022-07-16T16:06:59Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.