Comparison between neural network clustering, hierarchical clustering and k-means clustering: Applications using fluidic lenses
- URL: http://arxiv.org/abs/2503.22448v1
- Date: Fri, 28 Mar 2025 14:01:12 GMT
- Title: Comparison between neural network clustering, hierarchical clustering and k-means clustering: Applications using fluidic lenses
- Authors: Graciana Puentes,
- Abstract summary: A comparison between neural network clustering (NNC), hierarchical clustering (HC) and K-means clustering (KMC) is performed.<n>For NNC, a self-organizing map (SOM) training was applied to a collection of wavefront sensor reconstructions.<n>For HC, the data was partitioned using a combined dissimilarity-linkage matrix.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A comparison between neural network clustering (NNC), hierarchical clustering (HC) and K-means clustering (KMC) is performed to evaluate the computational superiority of these three machine learning (ML) techniques for organizing large datasets into clusters. For NNC, a self-organizing map (SOM) training was applied to a collection of wavefront sensor reconstructions, decomposed in terms of 15 Zernike coefficients, characterizing the optical aberrations of the phase front transmitted by fluidic lenses. In order to understand the distribution and structure of the 15 Zernike variables within an input space, SOM-neighboring weight distances, SOM-sample hits, SOM-weight positions and SOM-weight planes were analyzed to form a visual interpretation of the system's structural properties. In the case of HC, the data was partitioned using a combined dissimilarity-linkage matrix computation. The effectiveness of this method was confirmed by a high cophenetic correlation coefficient value (c=0.9651). Additionally, a maximum number of clusters was established by setting an inconsistency cutoff of 0.8, yielding a total of 7 clusters for system segmentation. In addition, a KMC approach was employed to establish a quantitative measure of clustering segmentation efficiency, obtaining a sillhoute average value of 0.905 for data segmentation into K=5 non-overlapping clusters. On the other hand, the NNC analysis revealed that the 15 variables could be characterized through the collective influence of 8 clusters. It was established that the formation of clusters through the combined linkage and dissimilarity algorithms of HC alongside KMC is a more dependable clustering solution than separate assessment via NNC or HC, where altering the SOM size or inconsistency cutoff can lead to completely new clustering configurations.
Related papers
- Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient [0.5939858158928473]
This paper proposes an algorithm named k- SCC to estimate the optimal k in categorical data clustering.<n> Comparative experiments were conducted on both synthetic and real datasets to compare the performance of k- SCC.
arXiv Detail & Related papers (2025-01-26T14:29:11Z) - Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
We propose a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space.
Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process.
arXiv Detail & Related papers (2024-11-04T04:09:36Z) - Similarity and Dissimilarity Guided Co-association Matrix Construction for Ensemble Clustering [22.280221709474105]
We propose the Similarity and Dissimilarity Guided Co-association matrix (SDGCA) to achieve ensemble clustering.
First, we introduce normalized ensemble entropy to estimate the quality of each cluster, and construct a similarity matrix based on this estimation.
We employ the random walk to explore high-order proximity of base clusterings to construct a dissimilarity matrix.
arXiv Detail & Related papers (2024-11-01T08:10:28Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis.
This paper proposes a novel Fuzzy textitK-Means clustering algorithm that entirely eliminates the reliance on cluster centroids.
arXiv Detail & Related papers (2024-04-07T12:25:03Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - An improved spectral clustering method for community detection under the
degree-corrected stochastic blockmodel [1.0965065178451106]
We propose an improved spectral clustering (ISC) approach under the degree corrected block model (SBM)
ISC provides a significant improvement on two weak signal networks Simmons and Caltech, with error rates of 121/1137 and 96/590, respectively.
arXiv Detail & Related papers (2020-11-12T13:35:11Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z) - Improving k-Means Clustering Performance with Disentangled Internal
Representations [0.0]
We propose a simpler approach of optimizing the entanglement of the learned latent code representation of an autoencoder.
Using our proposed approach, the test clustering accuracy was 96.2% on the MNIST dataset, 85.6% on the Fashion-MNIST dataset, and 79.2% on the EMNIST Balanced dataset, outperforming our baseline models.
arXiv Detail & Related papers (2020-06-05T11:32:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.