論文の概要: Deterministic Medical Image Translation via High-fidelity Brownian Bridges
- arxiv url: http://arxiv.org/abs/2503.22531v1
- Date: Fri, 28 Mar 2025 15:33:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:52.080323
- Title: Deterministic Medical Image Translation via High-fidelity Brownian Bridges
- Title(参考訳): 高忠実なブラウン橋による医用画像の確定的翻訳
- Authors: Qisheng He, Nicholas Summerfield, Peiyong Wang, Carri Glide-Hurst, Ming Dong,
- Abstract要約: 医用画像翻訳のための新しい高忠実ブラウン橋モデル(HiFi-BBrg)を提案する。
複数のデータセットに対する実験により,HiFi-BBrgはマルチモーダル画像変換やマルチイメージ超解像において最先端の手法より優れていた。
- 参考スコア(独自算出の注目度): 2.35590714498239
- License:
- Abstract: Recent studies have shown that diffusion models produce superior synthetic images when compared to Generative Adversarial Networks (GANs). However, their outputs are often non-deterministic and lack high fidelity to the ground truth due to the inherent randomness. In this paper, we propose a novel High-fidelity Brownian bridge model (HiFi-BBrg) for deterministic medical image translations. Our model comprises two distinct yet mutually beneficial mappings: a generation mapping and a reconstruction mapping. The Brownian bridge training process is guided by the fidelity loss and adversarial training in the reconstruction mapping. This ensures that translated images can be accurately reversed to their original forms, thereby achieving consistent translations with high fidelity to the ground truth. Our extensive experiments on multiple datasets show HiFi-BBrg outperforms state-of-the-art methods in multi-modal image translation and multi-image super-resolution.
- Abstract(参考訳): 近年の研究では、拡散モデルがGAN(Generative Adversarial Networks)と比較して優れた合成画像を生成することが示されている。
しかしながら、それらの出力はしばしば非決定論的であり、固有のランダム性のため、基底真理に対する高い忠実さを欠いている。
本稿では, 決定論的医用画像翻訳のための新しい高忠実ブラウン橋モデル (HiFi-BBrg) を提案する。
我々のモデルは、生成マッピングと再構成マッピングの2つの異なる、相互に有益なマッピングで構成されている。
ブラウン橋の訓練過程は, 復元地図における忠実度損失と敵の訓練によって導かれる。
これにより、翻訳された画像が元の形式に正確に逆転できることが保証され、それによって基底真理に忠実な一貫した翻訳が達成される。
マルチモーダル画像変換やマルチイメージ超解像において,HiFi-BBrgは最先端の手法よりも優れていることを示す。
関連論文リスト
- ZeroStereo: Zero-shot Stereo Matching from Single Images [17.560148513475387]
ゼロショットステレオマッチングのための新しいステレオ画像生成パイプラインであるZeroStereoを提案する。
提案手法は, 単眼深度推定モデルにより生成された擬似格差を利用して, 高品質な右画像の合成を行う。
我々のパイプラインは、Scene Flowに匹敵するデータセットボリュームで複数のデータセットにまたがる最先端のゼロショット一般化を実現する。
論文 参考訳(メタデータ) (2025-01-15T08:43:48Z) - Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model [101.65105730838346]
離散的かつ連続的なデータに対してマルチモーダルモデルをトレーニングするためのレシピであるTransfusionを紹介する。
我々はテキストと画像の混合データに基づいて,テキストから最大7Bパラメータまでの複数のTransfusionモデルを事前訓練する。
実験の結果,Transfusionは画像の定量化や個別画像トークンによる言語モデルの訓練よりも,はるかに優れたスケールを実現していることがわかった。
論文 参考訳(メタデータ) (2024-08-20T17:48:20Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
本稿では,拡散過程下での1つのフレームワークに,モダクティブと差別的事前学習を統一するDiffDisを提案する。
DiffDisは画像生成タスクと画像テキスト識別タスクの両方において単一タスクモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T05:03:48Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - RoentGen: Vision-Language Foundation Model for Chest X-ray Generation [7.618389245539657]
我々は,胸部X線のコーパスに事前学習した潜伏拡散モデルを適用することで,大きな自然医学的分布変化を克服する戦略を開発する。
テキストプロンプトに条件付された高忠実で多様な合成CXRを生成するモデルの能力について検討する。
得られたモデル(RoentGen)が視覚的に説得力があり多様な合成CXR画像を生成することができることを示す。
論文 参考訳(メタデータ) (2022-11-23T06:58:09Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
ソース・トゥ・ターゲット・モダリティ変換による画像の欠落の計算は、医用画像プロトコルの多様性を向上させることができる。
本稿では, 医用画像翻訳の性能向上のための逆拡散モデルであるSynDiffを提案する。
論文 参考訳(メタデータ) (2022-07-17T15:53:24Z) - BBDM: Image-to-image Translation with Brownian Bridge Diffusion Models [50.39417112077254]
BBDM(Brownian Bridge Diffusion Model)に基づく画像から画像への変換手法を提案する。
我々の知る限りでは、画像から画像への変換のためのブラウン橋拡散プロセスを提案する最初の作品である。
論文 参考訳(メタデータ) (2022-05-16T13:47:02Z) - Dual Diffusion Implicit Bridges for Image-to-Image Translation [104.59371476415566]
画像と画像の共通翻訳法は、ソースドメインとターゲットドメインの両方のデータに対する共同トレーニングに依存している。
本稿では拡散モデルに基づく画像変換法であるDual Diffusion Implicit Bridges (DDIBs)を提案する。
DDIBは任意のソースターゲットドメイン間の変換を可能にし、それぞれのドメイン上で独立に訓練された拡散モデルを与える。
論文 参考訳(メタデータ) (2022-03-16T04:10:45Z) - Flow-based Deformation Guidance for Unpaired Multi-Contrast MRI
Image-to-Image Translation [7.8333615755210175]
本稿では,非可逆的アーキテクチャに基づく画像と画像の非対角変換に対する新しいアプローチを提案する。
我々は、連続スライス間の時間的情報を利用して、不適切な医療画像において、あるドメインを別のドメインに変換する最適化により多くの制約を与える。
論文 参考訳(メタデータ) (2020-12-03T09:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。