論文の概要: RELD: Regularization by Latent Diffusion Models for Image Restoration
- arxiv url: http://arxiv.org/abs/2503.22563v1
- Date: Fri, 28 Mar 2025 16:04:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:20.763809
- Title: RELD: Regularization by Latent Diffusion Models for Image Restoration
- Title(参考訳): RELD:画像復元のための潜時拡散モデルによる正規化
- Authors: Pasquale Cascarano, Lorenzo Stacchio, Andrea Sebastiani, Alessandro Benfenati, Ulugbek S. Kamilov, Gustavo Marfia,
- Abstract要約: 半量子分割を用いた変分フレームワークに遅延拡散モデルを導入する手法を提案する。
提案した戦略はRegularization by Latent Denoising (RELD)と呼ばれ、自然画像のデータセット上でテストされる。
- 参考スコア(独自算出の注目度): 41.602636013364574
- License:
- Abstract: In recent years, Diffusion Models have become the new state-of-the-art in deep generative modeling, ending the long-time dominance of Generative Adversarial Networks. Inspired by the Regularization by Denoising principle, we introduce an approach that integrates a Latent Diffusion Model, trained for the denoising task, into a variational framework using Half-Quadratic Splitting, exploiting its regularization properties. This approach, under appropriate conditions that can be easily met in various imaging applications, allows for reduced computational cost while achieving high-quality results. The proposed strategy, called Regularization by Latent Denoising (RELD), is then tested on a dataset of natural images, for image denoising, deblurring, and super-resolution tasks. The numerical experiments show that RELD is competitive with other state-of-the-art methods, particularly achieving remarkable results when evaluated using perceptual quality metrics.
- Abstract(参考訳): 近年,拡散モデル(Diffusion Models)が深層生成モデリングにおける新たな最先端技術となり,生成的敵対的ネットワークの長期支配を終わらせている。
偏極化原理による正則化に着想を得て、偏極化タスクのために訓練された潜在拡散モデルを半量子分割を用いた変分フレームワークに統合し、正則化特性を活用するアプローチを導入する。
このアプローチは、様々なイメージングアプリケーションで容易に満足できる適切な条件下で、高品質な結果が得られながら計算コストを削減できる。
提案された戦略は、Regularization by Latent Denoising (RELD)と呼ばれ、自然画像のデータセットでテストされ、画像のデノイング、デブロアリング、超高解像度タスクに使用される。
数値実験により,RELDは他の最先端手法と競合することが示された。
関連論文リスト
- Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPM) は近年,条件付きおよび非条件付き画像生成において顕著な成果を上げている。
我々はGradPaintを紹介し、グローバルな一貫性のあるイメージに向けて世代を操る。
我々は、様々なデータセットで訓練された拡散モデルによく適応し、現在最先端の教師付きおよび教師なしの手法を改善している。
論文 参考訳(メタデータ) (2023-09-18T09:36:24Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Anomaly Detection with Conditioned Denoising Diffusion Models [32.37548329437798]
対象画像に条件付けされた画像再構成のための新しいデノナイズプロセスであるDAD(Denoising Diffusion Anomaly Detection)を導入する。
我々の異常検出フレームワークは条件付け機構を用いており、ターゲット画像が入力画像として設定され、復調過程を導出する。
DDADは、それぞれ(99.8%)および(98.9%)画像レベルのAUROCの最先端結果を達成する。
論文 参考訳(メタデータ) (2023-05-25T11:54:58Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
我々は拡散モデルを用いて再構成過程をノイズ・ツー・ノームパラダイムに再構成する。
本稿では,拡散モデルにおける従来の反復的復調よりもはるかに高速な高速な一段階復調パラダイムを提案する。
セグメント化サブネットワークは、入力画像とその異常のない復元を用いて画素レベルの異常スコアを予測する。
論文 参考訳(メタデータ) (2023-03-15T16:14:06Z) - Unsupervised Visual Defect Detection with Score-Based Generative Model [17.610722842950555]
我々は、教師なしの視覚的欠陥検出とローカライゼーションタスクに焦点をあてる。
近年のスコアベース生成モデルに基づく新しいフレームワークを提案する。
提案手法を複数のデータセット上で評価し,その有効性を実証する。
論文 参考訳(メタデータ) (2022-11-29T11:06:29Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
unpaired image-to-image translationは、教師なしの方法で画像ドメイン間のマッピングを学ぶことを指す。
既存の手法はしばしば、外れ値への堅牢性や予測不確実性を明示的にモデル化せずに決定論的マッピングを学習する。
Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC) という新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T15:22:35Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。