論文の概要: Comparing Methods for Bias Mitigation in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2503.22569v1
- Date: Fri, 28 Mar 2025 16:18:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:28:33.197107
- Title: Comparing Methods for Bias Mitigation in Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークにおけるバイアス低減法の比較
- Authors: Barbara Hoffmann, Ruben Mayer,
- Abstract要約: 本稿では,生成人工知能(GenAI)のためのデータ準備において,グラフニューラルネットワーク(GNN)が果たす重要な役割について考察する。
本稿では,データスペーシフィケーション,特徴修正,合成データ拡張という,3つの異なるバイアス緩和手法の比較分析を行った。
- 参考スコア(独自算出の注目度): 5.256237513030105
- License:
- Abstract: This paper examines the critical role of Graph Neural Networks (GNNs) in data preparation for generative artificial intelligence (GenAI) systems, with a particular focus on addressing and mitigating biases. We present a comparative analysis of three distinct methods for bias mitigation: data sparsification, feature modification, and synthetic data augmentation. Through experimental analysis using the german credit dataset, we evaluate these approaches using multiple fairness metrics, including statistical parity, equality of opportunity, and false positive rates. Our research demonstrates that while all methods improve fairness metrics compared to the original dataset, stratified sampling and synthetic data augmentation using GraphSAGE prove particularly effective in balancing demographic representation while maintaining model performance. The results provide practical insights for developing more equitable AI systems while maintaining model performance.
- Abstract(参考訳): 本稿では,生成人工知能(GenAI)システムのためのデータ準備において,グラフニューラルネットワーク(GNN)が果たす重要な役割について考察する。
本稿では,データスペーシフィケーション,特徴修正,合成データ拡張という,3つの異なるバイアス緩和手法の比較分析を行った。
ドイツの信用データセットを用いた実験分析により、統計的パリティ、機会の平等、偽陽性率などを含む複数の公正度指標を用いて、これらの手法を評価する。
本研究は,グラフSAGEを用いた階層化サンプリングと合成データ拡張が,モデル性能を維持しながら,人口動態のバランスをとる上で特に有効であることを示す。
結果は、モデル性能を維持しながら、より公平なAIシステムを開発するための実践的な洞察を提供する。
関連論文リスト
- Graph Neural Network-Driven Hierarchical Mining for Complex Imbalanced Data [0.8246494848934447]
本研究では,高次元不均衡データの階層的マイニングフレームワークを提案する。
データセットの構造化グラフ表現を構築し、グラフニューラルネットワークの埋め込みを統合することにより、提案手法は、サンプル間のグローバルな相互依存性を効果的にキャプチャする。
複数の実験シナリオにまたがる実証実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2025-02-06T06:26:41Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - A Comparative Study on Enhancing Prediction in Social Network Advertisement through Data Augmentation [0.6707149143800017]
本研究では,ソーシャルネットワーク広告データの生成的拡張フレームワークを提示し,検討する。
データ拡張のための3つの生成モデル - GAN(Generative Adversarial Networks)、VAE(variantal Autoencoders)、Gaussian Mixture Models(GMM) - を探索する。
論文 参考訳(メタデータ) (2024-04-22T01:16:11Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
自己指導型学習手法の安定性のメカニズムを説明するための枠組みを提供する。
我々は,BYOL,SWAV,SimSiam,Barlow Twins,DINOなどの非コントラスト技術であるSimCLRの動作メカニズムについて議論する。
私たちは異なる仮説を定式化し、Imagenet100データセットを使ってそれらをテストします。
論文 参考訳(メタデータ) (2024-02-22T20:36:24Z) - Novel Representation Learning Technique using Graphs for Performance
Analytics [0.0]
本稿では,グラフニューラルネットワーク(GNN)技術の進歩を活用するために,パフォーマンスデータをグラフに変換する新しいアイデアを提案する。
ソーシャルネットワークのような他の機械学習アプリケーションドメインとは対照的に、グラフは提供されない。
我々は,GNNから生成された埋め込みの有効性を,単純なフィードフォワードニューラルネットワークによる回帰処理の性能評価に基づいて評価した。
論文 参考訳(メタデータ) (2024-01-19T16:34:37Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
TRIAGEは回帰タスクに適した新しいデータキャラクタリゼーションフレームワークで、広範囲の回帰器と互換性がある。
TRIAGEは、共形予測分布を利用して、モデルに依存しないスコアリング方法、TRIAGEスコアを提供する。
TRIAGEの特徴は一貫性があり、複数の回帰設定においてデータの彫刻/フィルタリングによるパフォーマンス向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-29T10:31:59Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
この研究は、グラフニューラルネットワーク(GNN)を用いて得られるノード表現のバイアス源を理論的に説明する。
この分析に基づいて、本質的なバイアスを低減するために、公正に意識したデータ拡張フレームワークを開発した。
分析と提案手法は,様々なGNN学習機構の公平性を高めるために容易に利用できる。
論文 参考訳(メタデータ) (2022-01-21T05:49:15Z) - Transitioning from Real to Synthetic data: Quantifying the bias in model [1.6134566438137665]
本研究では,合成データを用いたモデルにおけるバイアスと公平性のトレードオフを確立することを目的とする。
合成データを用いて訓練したモデルには、様々なレベルのバイアスの影響があることを実証する。
論文 参考訳(メタデータ) (2021-05-10T06:57:14Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。