論文の概要: LLM-enabled Instance Model Generation
- arxiv url: http://arxiv.org/abs/2503.22587v1
- Date: Fri, 28 Mar 2025 16:34:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:32:08.522520
- Title: LLM-enabled Instance Model Generation
- Title(参考訳): LLM対応インスタンスモデル生成
- Authors: Fengjunjie Pan, Nenad Petrovic, Vahid Zolfaghari, Long Wen, Alois Knoll,
- Abstract要約: 本研究では,大規模言語モデル(LLM)を用いたインスタンスモデルの生成について検討する。
まず、LLMを用いて、必要なすべてのインスタンスモデル情報を含む簡易な構造化出力を生成し、その中間表現を有効なXMIファイルにコンパイルする。
提案手法は, 実例モデル生成タスクにおけるLCMのユーザビリティを著しく向上することを示す。
- 参考スコア(独自算出の注目度): 4.52634430160579
- License:
- Abstract: In the domain of model-based engineering, models are essential components that enable system design and analysis. Traditionally, the creation of these models has been a manual process requiring not only deep modeling expertise but also substantial domain knowledge of target systems. With the rapid advancement of generative artificial intelligence, large language models (LLMs) show potential for automating model generation. This work explores the generation of instance models using LLMs, focusing specifically on producing XMI-based instance models from Ecore metamodels and natural language specifications. We observe that current LLMs struggle to directly generate valid XMI models. To address this, we propose a two-step approach: first, using LLMs to produce a simplified structured output containing all necessary instance model information, namely a conceptual instance model, and then compiling this intermediate representation into a valid XMI file. The conceptual instance model is format-independent, allowing it to be transformed into various modeling formats via different compilers. The feasibility of the proposed method has been demonstrated using several LLMs, including GPT-4o, o1-preview, Llama 3.1 (8B and 70B). Results show that the proposed method significantly improves the usability of LLMs for instance model generation tasks. Notably, the smaller open-source model, Llama 3.1 70B, demonstrated performance comparable to proprietary GPT models within the proposed framework.
- Abstract(参考訳): モデルベースエンジニアリングの分野では、モデルはシステム設計と分析を可能にする重要なコンポーネントである。
伝統的に、これらのモデルの作成は、深いモデリングの専門知識だけでなく、ターゲットシステムの相当なドメイン知識を必要とする手作業のプロセスであった。
生成人工知能の急速な進歩により、大規模言語モデル(LLM)はモデル生成の自動化の可能性を示している。
本研究では,LLMを用いたインスタンスモデルの生成について検討し,Ecoreメタモデルと自然言語仕様からXMIベースのインスタンスモデルを生成することに焦点を当てた。
我々は、現在のLLMが有効なXMIモデルを生成するのに苦労していることを観察する。
まず、LLMを用いて、必要なすべてのインスタンスモデル情報、すなわち概念インスタンスモデルを含む単純化された構造化出力を生成し、その中間表現を有効なXMIファイルにコンパイルする。
概念インスタンスモデルはフォーマットに依存しないため、異なるコンパイラを介して様々なモデリングフォーマットに変換することができる。
提案手法の有効性は, GPT-4o, o1-preview, Llama 3.1 (8B, 70B) などいくつかのLCMを用いて実証されている。
提案手法は, 実例モデル生成タスクにおけるLCMのユーザビリティを著しく向上することを示す。
特に、小さなオープンソースモデルであるLlama 3.1 70Bは、提案されたフレームワーク内のプロプライエタリなGPTモデルに匹敵する性能を示した。
関連論文リスト
- A Model Is Not Built By A Single Prompt: LLM-Based Domain Modeling With Question Decomposition [4.123601037699469]
現実世界のドメインモデリングでは、エンジニアは通常複雑なタスクを簡単に解けるサブタスクに分解する。
本稿では,開発者のモデリングプロセスに類似した質問分解によるLLMに基づくドメインモデリング手法を提案する。
予備的な結果から,本手法は単発プロンプトによるプロンプトよりも優れていた。
論文 参考訳(メタデータ) (2024-10-13T14:28:04Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
本稿では,全体論的な大規模言語モデルスケーリングガイドラインであるModel-GLUEを紹介する。
既存のスケーリングテクニック,特に選択的マージ,および混合の変種をベンチマークする。
次に、異種モデル動物園の選択と集約のための最適な戦略を定式化する。
我々の手法は、マージ可能なモデルのクラスタリング、最適なマージ戦略選択、クラスタの統合を含む。
論文 参考訳(メタデータ) (2024-10-07T15:55:55Z) - Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach [1.8874331450711404]
本稿では,イベントログのモデリング,インテリジェントなモデリングアシスタント,モデリング操作の生成を組み合わせた概念的フレームワークを提案する。
特に、アーキテクチャは、設計者がシステムを指定するのを助け、その操作をグラフィカルなモデリング環境内で記録し、関連する操作を自動的に推奨する、モデリングコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-08-26T13:26:44Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
大規模言語モデル(LLM)はテキスト生成に革命をもたらし、人間の文章を忠実に模倣する出力を生成する。
我々は、ブラックボックステキスト検出における最先端性能を再定義する革新的なフレームワークであるDLD(Dis Distribution-Aligned LLMs Detection)を提案する。
DALDは、サロゲートモデルの分布を未知の目標LLMの分布と整合させ、高速モデルの反復に対する検出能力とレジリエンスを向上するように設計されている。
論文 参考訳(メタデータ) (2024-06-07T19:38:05Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Process Modeling With Large Language Models [42.0652924091318]
本稿では,大規模言語モデル(LLM)のプロセスモデリングへの統合について検討する。
プロセスモデルの自動生成と反復的改善にLLMを利用するフレームワークを提案する。
予備的な結果は、プロセスモデリングタスクを合理化するフレームワークの能力を示している。
論文 参考訳(メタデータ) (2024-03-12T11:27:47Z) - Data Science with LLMs and Interpretable Models [19.4969442162327]
大きな言語モデル(LLM)は解釈可能なモデルを扱うのに非常に適しています。
LLMはGAM(Generalized Additive Models)を記述、解釈、デバッグできることを示す。
論文 参考訳(メタデータ) (2024-02-22T12:04:15Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
本稿では,補助モデルにより生成された学習信号を用いて,大規模自動符号化言語モデルの事前学習を行う。
我々は「モデル生成dEnoising TRaining Objective」(METRO)というレシピを提案する。
結果、最大54億のパラメータからなるMETRO-LMは、GLUE、SuperGLUE、SQuADベンチマークで新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-04-13T21:39:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。