Sentiment Classification of Thai Central Bank Press Releases Using Supervised Learning
- URL: http://arxiv.org/abs/2503.22629v1
- Date: Fri, 28 Mar 2025 17:20:41 GMT
- Title: Sentiment Classification of Thai Central Bank Press Releases Using Supervised Learning
- Authors: Stefano Grassi,
- Abstract summary: This study applies supervised machine learning techniques to classify the sentiment of press releases from the Bank of Thailand.<n>My findings show that supervised learning can be an effective method, even with smaller datasets, and serves as a starting point for further automation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Central bank communication plays a critical role in shaping economic expectations and monetary policy effectiveness. This study applies supervised machine learning techniques to classify the sentiment of press releases from the Bank of Thailand, addressing gaps in research that primarily focus on lexicon-based approaches. My findings show that supervised learning can be an effective method, even with smaller datasets, and serves as a starting point for further automation. However, achieving higher accuracy and better generalization requires a substantial amount of labeled data, which is time-consuming and demands expertise. Using models such as Na\"ive Bayes, Random Forest and SVM, this study demonstrates the applicability of machine learning for central bank sentiment analysis, with English-language communications from the Thai Central Bank as a case study.
Related papers
- Enhancing Exchange Rate Forecasting with Explainable Deep Learning Models [1.5474412217744966]
Traditional forecasting models often falter when addressing the inherent complexities and non-linearities of exchange rate data.
This study explores the application of advanced deep learning models, including LSTM, CNN, and transformer-based architectures, to enhance the predictive accuracy of the RMB/USD exchange rate.
arXiv Detail & Related papers (2024-10-25T01:29:54Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Exploring the Robustness of Decentralized Training for Large Language
Models [51.41850749014054]
Decentralized training of large language models has emerged as an effective way to democratize this technology.
This paper explores the robustness of decentralized training from three main perspectives.
arXiv Detail & Related papers (2023-12-01T04:04:03Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z) - Analysis of the Fed's communication by using textual entailment model of
Zero-Shot classification [0.0]
We analyze documents published by central banks using text mining techniques.
We compare the tone of the statements, minutes, press conference transcripts of meetings, and the Fed officials' speeches.
arXiv Detail & Related papers (2023-06-07T09:23:26Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - Neural Forecasting of the Italian Sovereign Bond Market with Economic
News [0.9281671380673304]
We employ economic news within a neural network framework to forecast the Italian 10-year interest rate spread.
We deploy such information within a probabilistic forecasting framework with autoregressive recurrent networks (DeepAR)
Our findings suggest that a deep learning network based on Long-Short Term Memory cells outperforms classical machine learning techniques.
arXiv Detail & Related papers (2022-03-11T12:24:22Z) - Conditional Bilingual Mutual Information Based Adaptive Training for
Neural Machine Translation [66.23055784400475]
Token-level adaptive training approaches can alleviate the token imbalance problem.
We propose a target-context-aware metric, named conditional bilingual mutual information (CBMI)
CBMI can be efficiently calculated during model training without any pre-specific statistical calculations.
arXiv Detail & Related papers (2022-03-06T12:34:10Z) - Desiderata for Explainable AI in statistical production systems of the
European Central Bank [0.537133760455631]
We aim to state user-centric desiderata for explainable AI reflecting common explainability needs experienced in statistical production systems of the European Central Bank.
We provide two concrete use cases from the domain of statistical data production in central banks: the detection of outliers in the Centralised Securities Database and the data-driven identification of data quality checks for the Supervisory Banking data system.
arXiv Detail & Related papers (2021-07-18T05:58:11Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
We present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models.
Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals.
arXiv Detail & Related papers (2020-05-09T01:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.