Self-Evolving Multi-Agent Simulations for Realistic Clinical Interactions
- URL: http://arxiv.org/abs/2503.22678v1
- Date: Fri, 28 Mar 2025 17:59:53 GMT
- Title: Self-Evolving Multi-Agent Simulations for Realistic Clinical Interactions
- Authors: Mohammad Almansoori, Komal Kumar, Hisham Cholakkal,
- Abstract summary: We introduce MedAgentSim, an open-source simulated clinical environment with doctor, patient, and measurement agents.<n>Unlike prior approaches, our framework requires doctor agents to actively engage with patients through multi-turn conversations.<n>We incorporate self improvement mechanisms that allow models to iteratively refine their diagnostic strategies.
- Score: 16.50490537786593
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we introduce MedAgentSim, an open-source simulated clinical environment with doctor, patient, and measurement agents designed to evaluate and enhance LLM performance in dynamic diagnostic settings. Unlike prior approaches, our framework requires doctor agents to actively engage with patients through multi-turn conversations, requesting relevant medical examinations (e.g., temperature, blood pressure, ECG) and imaging results (e.g., MRI, X-ray) from a measurement agent to mimic the real-world diagnostic process. Additionally, we incorporate self improvement mechanisms that allow models to iteratively refine their diagnostic strategies. We enhance LLM performance in our simulated setting by integrating multi-agent discussions, chain-of-thought reasoning, and experience-based knowledge retrieval, facilitating progressive learning as doctor agents interact with more patients. We also introduce an evaluation benchmark for assessing the LLM's ability to engage in dynamic, context-aware diagnostic interactions. While MedAgentSim is fully automated, it also supports a user-controlled mode, enabling human interaction with either the doctor or patient agent. Comprehensive evaluations in various simulated diagnostic scenarios demonstrate the effectiveness of our approach. Our code, simulation tool, and benchmark are available at \href{https://medagentsim.netlify.app/}.
Related papers
- TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.
Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.
We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - Empowering Medical Multi-Agents with Clinical Consultation Flow for Dynamic Diagnosis [20.59719567178192]
We propose a multi-agent framework inspired by consultation flow and reinforcement learning (RL) to simulate the entire consultation process.
Our approach incorporates a hierarchical action set, structured from clinic consultation flow and medical textbook, to effectively guide the decision-making process.
This strategy improves agent interactions, enabling them to adapt and optimize actions based on the dynamic state.
arXiv Detail & Related papers (2025-03-19T08:47:18Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.<n>We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.
Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Adaptive Reasoning and Acting in Medical Language Agents [3.8936716676293917]
This paper presents an innovative large language model (LLM) agent framework for enhancing diagnostic accuracy in simulated clinical environments.
The proposed automatic correction enables doctor agents to iteratively refine their reasoning and actions following incorrect diagnoses.
arXiv Detail & Related papers (2024-10-13T21:45:16Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments [2.567146936147657]
We introduce AgentClinic, a multimodal agent benchmark for evaluating large language models (LLM) in simulated clinical environments.
We find that solving MedQA problems in the sequential decision-making format of AgentClinic is considerably more challenging, resulting in diagnostic accuracies that can drop to below a tenth of the original accuracy.
arXiv Detail & Related papers (2024-05-13T17:38:53Z) - Automatic Interactive Evaluation for Large Language Models with State Aware Patient Simulator [21.60103376506254]
Large Language Models (LLMs) have demonstrated remarkable proficiency in human interactions.
This paper introduces the Automated Interactive Evaluation (AIE) framework and the State-Aware Patient Simulator (SAPS)
AIE and SAPS provide a dynamic, realistic platform for assessing LLMs through multi-turn doctor-patient simulations.
arXiv Detail & Related papers (2024-03-13T13:04:58Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.