Symmetry-Informed Graph Neural Networks for Carbon Dioxide Isotherm and Adsorption Prediction in Aluminum-Substituted Zeolites
- URL: http://arxiv.org/abs/2503.22737v1
- Date: Wed, 26 Mar 2025 17:08:28 GMT
- Title: Symmetry-Informed Graph Neural Networks for Carbon Dioxide Isotherm and Adsorption Prediction in Aluminum-Substituted Zeolites
- Authors: Marko Petković, José-Manuel Vicent Luna, Elīza Beate Dinne, Vlado Menkovski, Sofía Calero,
- Abstract summary: We introduce SymGNN, a graph neural network architecture that leverages material symmetries to improve adsorbing property prediction.<n>By incorporating symmetry operations into the message-passing mechanism, our model enhances parameter sharing across different topologies, leading to improved generalization.
- Score: 3.6443770850509423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting adsorption properties in nanoporous materials using Deep Learning models remains a challenging task. This challenge becomes even more pronounced when attempting to generalize to structures that were not part of the training data.. In this work, we introduce SymGNN, a graph neural network architecture that leverages material symmetries to improve adsorption property prediction. By incorporating symmetry operations into the message-passing mechanism, our model enhances parameter sharing across different zeolite topologies, leading to improved generalization. We evaluate SymGNN on both interpolation and generalization tasks, demonstrating that it successfully captures key adsorption trends, including the influence of both the framework and aluminium distribution on CO$_2$ adsorption. Furthermore, we apply our model to the characterization of experimental adsorption isotherms, using a genetic algorithm to infer likely aluminium distributions. Our results highlight the effectiveness of machine learning models trained on simulations for studying real materials and suggest promising directions for fine-tuning with experimental data and generative approaches for the inverse design of multifunctional nanomaterials.
Related papers
- Pretraining Graph Transformers with Atom-in-a-Molecule Quantum Properties for Improved ADMET Modeling [38.53065398127086]
We evaluate the impact of pretraining Graph Transformer architectures on atom-level quantum-mechanical features.
We find that models pretrained on atomic quantum mechanical properties capture more low-frequency laplacian eigenmodes.
arXiv Detail & Related papers (2024-10-10T15:20:30Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
This paper focuses on the impact of different canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement.
Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
arXiv Detail & Related papers (2024-07-11T09:04:12Z) - Graph Neural Networks for Carbon Dioxide Adsorption Prediction in Aluminium-Exchanged Zeolites [3.909855210960908]
We propose a model which is 4 to 5 orders of magnitude faster at adsorbing properties compared to molecular simulations.
The predictions obtained from the Machine Learning model are in agreement with the values obtained from the Monte Carlo simulations.
We show that the model can be used for identifying adsorbing sites.
arXiv Detail & Related papers (2024-03-19T11:49:08Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
Graph neural networks (GNNs) have drawn more and more attention from material scientists.
We develop a multi-task (MT) architecture based on DimeNet++ and mixture density networks to improve the performance of such task.
arXiv Detail & Related papers (2022-09-15T13:52:15Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - PIGNet: A physics-informed deep learning model toward generalized
drug-target interaction predictions [0.0]
We propose two key strategies to enhance generalization in the DTI model.
The first is to predict the atom-atom pairwise interactions via physics-informed equations parameterized with neural networks.
We further improved the model generalization by augmenting a range of binding poses and to broader training data.
arXiv Detail & Related papers (2020-08-22T14:29:58Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - Global Attention based Graph Convolutional Neural Networks for Improved
Materials Property Prediction [8.371766047183739]
We develop a novel model, GATGNN, for predicting inorganic material properties based on graph neural networks.
We show that our method is able to both outperform the previous models' predictions and provide insight into the crystallization of the material.
arXiv Detail & Related papers (2020-03-11T07:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.