Global Attention based Graph Convolutional Neural Networks for Improved
Materials Property Prediction
- URL: http://arxiv.org/abs/2003.13379v1
- Date: Wed, 11 Mar 2020 07:43:14 GMT
- Title: Global Attention based Graph Convolutional Neural Networks for Improved
Materials Property Prediction
- Authors: Steph-Yves Louis, Yong Zhao, Alireza Nasiri, Xiran Wong, Yuqi Song,
Fei Liu, Jianjun Hu
- Abstract summary: We develop a novel model, GATGNN, for predicting inorganic material properties based on graph neural networks.
We show that our method is able to both outperform the previous models' predictions and provide insight into the crystallization of the material.
- Score: 8.371766047183739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) methods have gained increasing popularity in exploring
and developing new materials. More specifically, graph neural network (GNN) has
been applied in predicting material properties. In this work, we develop a
novel model, GATGNN, for predicting inorganic material properties based on
graph neural networks composed of multiple graph-attention layers (GAT) and a
global attention layer. Through the application of the GAT layers, our model
can efficiently learn the complex bonds shared among the atoms within each
atom's local neighborhood. Subsequently, the global attention layer provides
the weight coefficients of each atom in the inorganic crystal material which
are used to considerably improve our model's performance. Notably, with the
development of our GATGNN model, we show that our method is able to both
outperform the previous models' predictions and provide insight into the
crystallization of the material.
Related papers
- Graph neural network framework for energy mapping of hybrid monte-carlo molecular dynamics simulations of Medium Entropy Alloys [0.0]
The present study proposes a graph-based representation for modeling medium-entropy alloys (MEAs)
Hybrid Monte-Carlo molecular dynamics (MC/MD) simulations are employed to achieve thermally stable structures across various annealing temperatures in an MEA.
These simulations generate dump files and potential energy labels, which are used to construct graph representations of the atomic configurations.
These graphs then serve as input for a Graph Convolutional Neural Network (GCNN) based ML model to predict the system's potential energy.
arXiv Detail & Related papers (2024-11-20T19:22:40Z) - Enhancing material property prediction with ensemble deep graph convolutional networks [9.470117608423957]
Recent efforts have focused on employing advanced ML algorithms, including deep learning - based graph neural network, for property prediction.
Our research provides an in-depth evaluation of ensemble strategies in deep learning - based graph neural network, specifically targeting material property prediction tasks.
By testing the Crystal Graph Convolutional Neural Network (CGCNN) and its multitask version, MT-CGCNN, we demonstrated that ensemble techniques, especially prediction averaging, substantially improve precision beyond traditional metrics.
arXiv Detail & Related papers (2024-07-26T16:12:06Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Image-Like Graph Representations for Improved Molecular Property
Prediction [7.119677737397071]
We propose a new intrinsic molecular representation that bypasses the need for GNNs entirely, dubbed CubeMol.
Our fixed-dimensional representation, when paired with a transformer model, exceeds the performance of state-of-the-art GNN models and provides a path for scalability.
arXiv Detail & Related papers (2021-11-20T22:39:11Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Scalable deeper graph neural networks for high-performance materials
property prediction [1.9129213267332026]
We propose a novel graph attention neural network model DeeperGATGNN with differenti groupable normalization and skip-connections.
Our work shows that to deal with the high complexity of mapping the crystal materials structures to their properties, large-scale very deep graph neural networks are needed to achieve robust performances.
arXiv Detail & Related papers (2021-09-25T05:58:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Orbital Graph Convolutional Neural Network for Material Property
Prediction [0.0]
We propose the Orbital Graph Convolutional Neural Network (OGCNN), a crystal graph convolutional neural network framework.
OGCNN includes atomic orbital interaction features that learn material properties in a robust way.
We examined the performance of this model on a broad range of crystalline material data to predict different properties.
arXiv Detail & Related papers (2020-08-14T15:22:22Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.