論文の概要: Uncertainty-Aware Graph Self-Training with Expectation-Maximization Regularization
- arxiv url: http://arxiv.org/abs/2503.22744v1
- Date: Wed, 26 Mar 2025 21:52:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:38:53.127116
- Title: Uncertainty-Aware Graph Self-Training with Expectation-Maximization Regularization
- Title(参考訳): 期待最大化正規化による不確実性を考慮したグラフ自己学習
- Authors: Emily Wang, Michael Chen, Chao Li,
- Abstract要約: 半教師付きノード分類のためのグラフ自己学習手法を提案する。
本手法は,擬似ラベル生成とモデル再学習における不確実性機構を組み込んだものである。
我々のフレームワークは、ノイズの多いグラフ構造や特徴空間をより効率的に扱うように設計されています。
- 参考スコア(独自算出の注目度): 2.743479615751918
- License:
- Abstract: In this paper, we propose a novel \emph{uncertainty-aware graph self-training} approach for semi-supervised node classification. Our method introduces an Expectation-Maximization (EM) regularization scheme to incorporate an uncertainty mechanism during pseudo-label generation and model retraining. Unlike conventional graph self-training pipelines that rely on fixed pseudo-labels, our approach iteratively refines label confidences with an EM-inspired uncertainty measure. This ensures that the predictive model focuses on reliable graph regions while gradually incorporating ambiguous nodes. Inspired by prior work on uncertainty-aware self-training techniques~\cite{wang2024uncertainty}, our framework is designed to handle noisy graph structures and feature spaces more effectively. Through extensive experiments on several benchmark graph datasets, we demonstrate that our method outperforms strong baselines by a margin of up to 2.5\% in accuracy while maintaining lower variance in performance across multiple runs.
- Abstract(参考訳): 本稿では,半教師付きノード分類のための新しい 'emph{uncertainty-aware graph self-training} アプローチを提案する。
本手法では,擬似ラベル生成とモデル再学習における不確実性を考慮した予測最大化(EM)正規化手法を提案する。
固定擬似ラベルに依存する従来のグラフ自己学習パイプラインとは異なり、我々のアプローチはEMにインスパイアされた不確実性尺度でラベルの信頼性を反復的に洗練する。
これにより、予測モデルは、不明瞭なノードを徐々に取り入れながら、信頼性の高いグラフ領域に焦点を当てる。
我々のフレームワークは,不確実性を考慮した自己学習技術~\cite{wang2024uncertainty}の先行研究に触発されて,ノイズの多いグラフ構造や特徴空間をより効率的に扱うように設計されている。
複数のベンチマークグラフデータセットに対する広範な実験により,本手法は複数の実行における性能のばらつきを抑えながら,最大2.5倍の精度で高いベースラインを達成できることが実証された。
関連論文リスト
- Uncertainty-aware self-training with expectation maximization basis transformation [9.7527450662978]
モデルとデータセットの両方の不確実性情報を組み合わせるための,新たな自己学習フレームワークを提案する。
具体的には,ラベルをスムースにし,不確実性情報を包括的に推定するために期待最大化(EM)を提案する。
論文 参考訳(メタデータ) (2024-05-02T11:01:31Z) - Pearls from Pebbles: Improved Confidence Functions for Auto-labeling [51.44986105969375]
しきい値に基づく自動ラベル付け(TBAL)は、上記のモデルの信頼度スコアのしきい値を見つけ、ラベルなしのデータポイントを正確にラベル付けすることで機能する。
本稿では,近位TBAL信頼度関数の研究のための枠組みを提案する。
本稿では,TBALシステムの性能を最大化するポストホック法を提案する。
論文 参考訳(メタデータ) (2024-04-24T20:22:48Z) - Distribution Consistency based Self-Training for Graph Neural Networks
with Sparse Labels [33.89511660654271]
グラフニューラルネットワーク(GNN)のノード分類は重要な課題である
ラベルなしデータの豊富さを活用するための、広く普及しているフレームワークとして、セルフトレーニングが登場した。
本稿では,情報的かつ分散の相違を認識可能な疑似ラベル付きノードを識別する,新しい分散一貫性グラフ自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T22:07:48Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
教師なしの人物再識別(ReID)は、アノテーションを使わずに人物検索のための識別的アイデンティティの特徴を学習することを目的としている。
近年の進歩はクラスタリングに基づく擬似ラベルを活用することで実現されている。
本稿では, Pseudo Label Refinement フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-30T09:39:57Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Two-phase Pseudo Label Densification for Self-training based Domain
Adaptation [93.03265290594278]
TPLDと呼ばれる,新規な二相擬似ラベル高密度化フレームワークを提案する。
第1フェーズでは,スライディングウインドウ投票を用いて,画像内の内在的空間相関を利用して,自信のある予測を広める。
第2フェーズでは,信頼度に基づく容易な分類を行う。
トレーニングプロセスの容易化と騒音予測の回避を目的として,ブートストラップ機構の導入を行った。
論文 参考訳(メタデータ) (2020-12-09T02:35:25Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。