The Marine Debris Forward-Looking Sonar Datasets
- URL: http://arxiv.org/abs/2503.22880v1
- Date: Fri, 28 Mar 2025 21:12:03 GMT
- Title: The Marine Debris Forward-Looking Sonar Datasets
- Authors: Matias Valdenegro-Toro, Deepan Chakravarthi Padmanabhan, Deepak Singh, Bilal Wehbe, Yvan Petillot,
- Abstract summary: This paper presents the Marine Debris Forward-Looking Sonar datasets, with three different settings.<n>We provide full dataset description, basic analysis and initial results for some tasks.<n>We expect the research community will benefit from this dataset.
- Score: 10.878811189489804
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Sonar sensing is fundamental for underwater robotics, but limited by capabilities of AI systems, which need large training datasets. Public data in sonar modalities is lacking. This paper presents the Marine Debris Forward-Looking Sonar datasets, with three different settings (watertank, turntable, flooded quarry) increasing dataset diversity and multiple computer vision tasks: object classification, object detection, semantic segmentation, patch matching, and unsupervised learning. We provide full dataset description, basic analysis and initial results for some tasks. We expect the research community will benefit from this dataset, which is publicly available at https://doi.org/10.5281/zenodo.15101686
Related papers
- Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)
In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.
We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - SeePerSea: Multi-modal Perception Dataset of In-water Objects for Autonomous Surface Vehicles [10.732732686425308]
This paper introduces the first publicly accessible labeled multi-modal perception dataset for autonomous maritime navigation.<n>It focuses on in-water obstacles within the aquatic environment to enhance situational awareness for Autonomous Surface Vehicles (ASVs)
arXiv Detail & Related papers (2024-04-29T04:00:19Z) - An Unbiased Look at Datasets for Visuo-Motor Pre-Training [20.094244564603184]
We show that dataset choice is just as important to this paradigm's success.
We observe that traditional vision datasets are surprisingly competitive options for visuo-motor representation learning.
We show that common simulation benchmarks are not a reliable proxy for real world performance.
arXiv Detail & Related papers (2023-10-13T17:59:02Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks.
We show, for the first time, that general representations learning can be achieved through the task of occupancy prediction.
Our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
arXiv Detail & Related papers (2023-09-19T11:13:01Z) - BrackishMOT: The Brackish Multi-Object Tracking Dataset [20.52569822945148]
There exist no publicly available annotated underwater multi-object tracking (MOT) datasets captured in turbid environments.
BrackishMOT consists of 98 sequences captured in the wild. Alongside the novel dataset, we present baseline results by training a state-of-the-art tracker.
We analyse the effects of including synthetic data during training and show that a combination of real and synthetic underwater training data can enhance tracking performance.
arXiv Detail & Related papers (2023-02-21T13:02:36Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization.
We propose a new dataset, Navya 3D (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain.
It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds.
arXiv Detail & Related papers (2023-02-16T13:41:19Z) - A Dataset with Multibeam Forward-Looking Sonar for Underwater Object
Detection [0.0]
Multibeam forward-looking sonar (MFLS) plays an important role in underwater detection.
There are several challenges to the research on underwater object detection with MFLS.
We present a novel dataset, consisting of over 9000 MFLS images captured using Tritech Gemini 1200ik sonar.
arXiv Detail & Related papers (2022-12-01T08:26:03Z) - Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision
Datasets from 3D Scans [103.92680099373567]
This paper introduces a pipeline to parametrically sample and render multi-task vision datasets from comprehensive 3D scans from the real world.
Changing the sampling parameters allows one to "steer" the generated datasets to emphasize specific information.
Common architectures trained on a generated starter dataset reached state-of-the-art performance on multiple common vision tasks and benchmarks.
arXiv Detail & Related papers (2021-10-11T04:21:46Z) - The Marine Debris Dataset for Forward-Looking Sonar Semantic
Segmentation [5.1627181881873945]
This paper presents a novel dataset for marine debris segmentation collected using a Forward Looking Sonar (FLS)
The objects used to produce this dataset contain typical house-hold marine debris and distractor marine objects.
Performance of state of the art semantic segmentation architectures with a variety of encoders have been analyzed on this dataset.
arXiv Detail & Related papers (2021-08-15T19:29:23Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
This report presents design considerations for automatically generating satellite imagery datasets for training machine learning models.
We discuss issues faced from the point of view of deep neural network training and evaluation.
arXiv Detail & Related papers (2021-04-28T15:13:12Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.