Task Tokens: A Flexible Approach to Adapting Behavior Foundation Models
- URL: http://arxiv.org/abs/2503.22886v1
- Date: Fri, 28 Mar 2025 21:28:13 GMT
- Title: Task Tokens: A Flexible Approach to Adapting Behavior Foundation Models
- Authors: Ron Vainshtein, Zohar Rimon, Shie Mannor, Chen Tessler,
- Abstract summary: behavior foundation models (BFMs) enable multi-modal, human-like control for humanoid agents.<n>"Task Tokens" are a method to effectively tailor BFMs to specific tasks while preserving their flexibility.<n>We show that Task Tokens offer a promising approach for adapting BFMs to specific control tasks while retaining their generalization capabilities.
- Score: 45.12916211850169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in imitation learning have led to transformer-based behavior foundation models (BFMs) that enable multi-modal, human-like control for humanoid agents. While excelling at zero-shot generation of robust behaviors, BFMs often require meticulous prompt engineering for specific tasks, potentially yielding suboptimal results. We introduce "Task Tokens", a method to effectively tailor BFMs to specific tasks while preserving their flexibility. Our approach leverages the transformer architecture of BFMs to learn a new task-specific encoder through reinforcement learning, keeping the original BFM frozen. This allows incorporation of user-defined priors, balancing reward design and prompt engineering. By training a task encoder to map observations to tokens, used as additional BFM inputs, we guide performance improvement while maintaining the model's diverse control characteristics. We demonstrate Task Tokens' efficacy across various tasks, including out-of-distribution scenarios, and show their compatibility with other prompting modalities. Our results suggest that Task Tokens offer a promising approach for adapting BFMs to specific control tasks while retaining their generalization capabilities.
Related papers
- Specialized Foundation Models Struggle to Beat Supervised Baselines [60.23386520331143]
We look at three modalities -- genomics, satellite imaging, and time series -- with multiple recent FMs and compare them to a standard supervised learning workflow.
We find that it is consistently possible to train simple supervised models that match or even outperform the latest foundation models.
arXiv Detail & Related papers (2024-11-05T04:10:59Z) - SwitchCIT: Switching for Continual Instruction Tuning [14.085371250265224]
Large language models (LLMs) and multimodal models (MMs) have exhibited impressive capabilities in various domains.
Continual instruction tuning is crucial to adapt a large model to evolving tasks and domains.
This work addresses the catastrophic forgetting in continual instruction learning through a mechanism for routing computations to parameter-efficient tuned models.
arXiv Detail & Related papers (2024-07-16T14:37:33Z) - From Instance Training to Instruction Learning: Task Adapters Generation from Instructions [29.452006810725184]
This paper focuses on simulating human learning to address the shortcomings of instance training.<n>We introduce Task Adapters Generation from Instructions (TAGI), which automatically constructs the task-specific model.<n>We evaluate TAGI on the Super-Natural Instructions and P3 datasets.
arXiv Detail & Related papers (2024-06-18T08:14:28Z) - Task Indicating Transformer for Task-conditional Dense Predictions [16.92067246179703]
We introduce a novel task-conditional framework called Task Indicating Transformer (TIT) to tackle this challenge.
Our approach designs a Mix Task Adapter module within the transformer block, which incorporates a Task Indicating Matrix through matrix decomposition.
We also propose a Task Gate Decoder module that harnesses a Task Indicating Vector and gating mechanism to facilitate adaptive multi-scale feature refinement.
arXiv Detail & Related papers (2024-03-01T07:06:57Z) - PEMT: Multi-Task Correlation Guided Mixture-of-Experts Enables Parameter-Efficient Transfer Learning [28.353530290015794]
We propose PEMT, a novel parameter-efficient fine-tuning framework based on multi-task transfer learning.
We conduct experiments on a broad range of tasks over 17 datasets.
arXiv Detail & Related papers (2024-02-23T03:59:18Z) - Foundation Model Sherpas: Guiding Foundation Models through Knowledge
and Reasoning [23.763256908202496]
Foundation models (FMs) have revolutionized the field of AI by showing remarkable performance in various tasks.
FMs exhibit numerous limitations that prevent their broader adoption in many real-world systems.
We propose a conceptual framework that encapsulates different modes by which agents could interact with FMs.
arXiv Detail & Related papers (2024-02-02T18:00:35Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Learning Task Automata for Reinforcement Learning using Hidden Markov
Models [37.69303106863453]
This paper proposes a novel pipeline for learning non-Markovian task specifications as succinct finite-state task automata'
We learn a product MDP, a model composed of the specification's automaton and the environment's MDP, by treating the product MDP as a partially observable MDP and using the well-known Baum-Welch algorithm for learning hidden Markov models.
Our learnt task automaton enables the decomposition of a task into its constituent sub-tasks, which improves the rate at which an RL agent can later synthesise an optimal policy.
arXiv Detail & Related papers (2022-08-25T02:58:23Z) - Unified Multimodal Pre-training and Prompt-based Tuning for
Vision-Language Understanding and Generation [86.26522210882699]
We propose Unified multimodal pre-training for both Vision-Language understanding and generation.
The proposed UniVL is capable of handling both understanding tasks and generative tasks.
Our experiments show that there is a trade-off between understanding tasks and generation tasks while using the same model.
arXiv Detail & Related papers (2021-12-10T14:59:06Z) - Adaptive Procedural Task Generation for Hard-Exploration Problems [78.20918366839399]
We introduce Adaptive Procedural Task Generation (APT-Gen) to facilitate reinforcement learning in hard-exploration problems.
At the heart of our approach is a task generator that learns to create tasks from a parameterized task space via a black-box procedural generation module.
To enable curriculum learning in the absence of a direct indicator of learning progress, we propose to train the task generator by balancing the agent's performance in the generated tasks and the similarity to the target tasks.
arXiv Detail & Related papers (2020-07-01T09:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.