論文の概要: Resona: Improving Context Copying in Linear Recurrence Models with Retrieval
- arxiv url: http://arxiv.org/abs/2503.22913v1
- Date: Fri, 28 Mar 2025 23:43:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:36:59.381324
- Title: Resona: Improving Context Copying in Linear Recurrence Models with Retrieval
- Title(参考訳): Resona: 検索付き線形再帰モデルにおけるコンテキストコピーの改善
- Authors: Xinyu Wang, Linrui Ma, Jerry Huang, Peng Lu, Prasanna Parthasarathi, Xiao-Wen Chang, Boxing Chen, Yufei Cui,
- Abstract要約: 本稿では,リニアリカレントモデルとリカレントモデルを組み合わせたシンプルでスケーラブルなフレームワークである__Resona__を紹介する。
様々な線形リカレントモデルの実験は、様々な合成および実世界の自然言語タスクにおいて顕著な性能向上を示す。
- 参考スコア(独自算出の注目度): 24.84741364872597
- License:
- Abstract: Recent shifts in the space of large language model (LLM) research have shown an increasing focus on novel architectures to compete with prototypical Transformer-based models that have long dominated this space. Linear recurrent models have proven to be a viable competitor due to their computational efficiency. However, such models still demonstrate a sizable gap compared to Transformers in terms of in-context learning among other tasks that require recalling information from a context. In this work, we introduce __Resona__, a simple and scalable framework for augmenting linear recurrent models with retrieval. __Resona__~augments models with the ability to integrate retrieved information from the provided input context, enabling tailored behavior to diverse task requirements. Experiments on a variety of linear recurrent models demonstrate that __Resona__-augmented models observe significant performance gains on a variety of synthetic as well as real-world natural language tasks, highlighting its ability to act as a general purpose method to improve the in-context learning and language modeling abilities of linear recurrent LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)研究の領域における最近の変化は、この領域を長年支配してきた原型トランスフォーマーベースのモデルと競合する新しいアーキテクチャに注目が集まっていることを示している。
線形リカレントモデルは、その計算効率のために、現実的な競合であることが証明されている。
しかし、このようなモデルは、コンテキスト内学習などコンテキストからの情報をリコールする必要があるタスクにおいて、Transformerと比較しても大きなギャップをみせている。
本稿では,リニアリカレントモデルとリカレントモデルを組み合わせたシンプルでスケーラブルなフレームワークである__Resona__を紹介する。
__Resona__~augments モデルは、提供された入力コンテキストから取得した情報を統合でき、多様なタスク要求に対する調整された振る舞いを可能にする。
線形リカレントモデルにおける実験により, __Resona__augmentedモデルは, 様々な合成および実世界の自然言語タスクにおいて, 顕著な性能向上を観測し, 線形リカレントLLMの文脈内学習と言語モデリング能力を改善するための汎用的手法として機能する能力を強調した。
関連論文リスト
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTM) には、潜在空間における明示的な事前モデルに従う明示的な潜在思考ベクトルが含まれている。
LTMは従来のLLMを超える拡張次元を持ち、構造化された設計空間を提供する。
LTMは従来の自己回帰モデルや離散拡散モデルよりも、検証の難易度やゼロショット言語モデリングにおいて著しく優れている。
論文 参考訳(メタデータ) (2025-02-03T17:50:34Z) - Joint Fine-tuning and Conversion of Pretrained Speech and Language Models towards Linear Complexity [11.302828987873497]
本稿では,変換器モデルを線形時間置換器に変換し,目標タスクに微調整するクロスアーキテクチャ層蒸留(CALD)手法を提案する。
そこで本研究では,CALDが元のモデルの結果を効果的に回収できることを示す。
論文 参考訳(メタデータ) (2024-10-09T13:06:43Z) - The Truth is in There: Improving Reasoning in Language Models with
Layer-Selective Rank Reduction [22.659005954676598]
重み行列の高次成分を選択的に除去することにより,大規模言語モデルの性能を大幅に向上させることができることを示す。
LAER(Layer-Selective Rank reduction)と呼ばれるこの単純な介入は、トレーニングが完了した後、モデル上で行うことができる。
言語モデルとデータセットにまたがって、この発見の汎用性を実証する広範な実験を示す。
論文 参考訳(メタデータ) (2023-12-21T03:51:08Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
アクティブラーニングは、モデルのパラメータに適合するために必要なデータ量を削減しようとする。
潜在変数モデルは神経科学、心理学、その他の様々な工学、科学分野において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-02-27T19:07:12Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。