論文の概要: Factored Agents: Decoupling In-Context Learning and Memorization for Robust Tool Use
- arxiv url: http://arxiv.org/abs/2503.22931v2
- Date: Wed, 02 Apr 2025 04:53:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 09:56:33.655949
- Title: Factored Agents: Decoupling In-Context Learning and Memorization for Robust Tool Use
- Title(参考訳): ファクターエージェント:ロバストツール使用のための文脈学習と記憶の分離
- Authors: Nicholas Roth, Christopher Hidey, Lucas Spangher, William F. Arnold, Chang Ye, Nick Masiewicki, Jinoo Baek, Peter Grabowski, Eugene Ie,
- Abstract要約: 本稿ではエージェントAIにおける従来の単一エージェントシステムの限界を克服する新しいファクターエージェントアーキテクチャを提案する。
提案手法はエージェントを,(1)高レベルプランナーおよびインコンテキスト学習者として機能する大規模言語モデル,(2)ツールフォーマットと出力の記憶器として機能する小型言語モデルに分解する。
経験的評価により,本アーキテクチャは,テキスト内学習と静的記憶のトレードオフを解明しつつ,計画精度と誤り回復性を著しく向上することが示された。
- 参考スコア(独自算出の注目度): 4.437184840125514
- License:
- Abstract: In this paper, we propose a novel factored agent architecture designed to overcome the limitations of traditional single-agent systems in agentic AI. Our approach decomposes the agent into two specialized components: (1) a large language model (LLM) that serves as a high level planner and in-context learner, which may use dynamically available information in user prompts, (2) a smaller language model which acts as a memorizer of tool format and output. This decoupling addresses prevalent issues in monolithic designs, including malformed, missing, and hallucinated API fields, as well as suboptimal planning in dynamic environments. Empirical evaluations demonstrate that our factored architecture significantly improves planning accuracy and error resilience, while elucidating the inherent trade-off between in-context learning and static memorization. These findings suggest that a factored approach is a promising pathway for developing more robust and adaptable agentic AI systems.
- Abstract(参考訳): 本稿では,エージェントAIにおける従来の単一エージェントシステムの限界を克服するために,新しいファクタリングエージェントアーキテクチャを提案する。
提案手法はエージェントを,(1)高レベルプランナーとして機能する大規模言語モデル(LLM)と,(2)ツールフォーマットと出力の記憶器として機能するより小さな言語モデルに分解する。
この分離は、モノリシックな設計における一般的な問題に対処する。例えば、不正、欠落、幻覚的なAPIフィールドや、動的環境における最適以下の計画である。
経験的評価により,本アーキテクチャは,テキスト内学習と静的記憶のトレードオフを解明しつつ,計画精度と誤り回復性を著しく向上することが示された。
これらの結果は、ファクタードアプローチがより堅牢で適応可能なエージェントAIシステムを開発するための有望な経路であることを示唆している。
関連論文リスト
- APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents [8.479128275067742]
本稿では,自律型エージェントによるMinecraftの複雑な構造構築を可能にする,LLM(Large Language Model)駆動のフレームワークを提案する。
連鎖分解とマルチモーダル入力を用いることで、このフレームワークは詳細なアーキテクチャレイアウトと青写真を生成する。
本エージェントは, メモリとリフレクションモジュールの両方を組み込んで, 生涯学習, 適応的洗練, エラー訂正を容易にする。
論文 参考訳(メタデータ) (2024-11-26T09:31:28Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP)は、大規模言語モデルが言語構造をどのように処理するかを分析するために設計された方法論である。
CAPは様々なモデルレベルで構成型プールを通してモデル活性化に介入する。
本研究は,合成セマンティクス処理とモデル解釈可能性に関する,現在のトランスフォーマーアーキテクチャの基本的制約を明らかにする。
論文 参考訳(メタデータ) (2024-10-16T18:10:50Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
我々はmccHRLと呼ばれる新しいフレームワークを提案し、リストワイドレコメンデーションにおける時間的抽象化のレベルを異なるものにする。
階層的な枠組みの中では、ハイレベルエージェントがユーザ知覚の進化を研究し、低レベルエージェントがアイテム選択ポリシーを作成している。
その結果,本手法による性能改善は,いくつかのよく知られたベースラインと比較して有意な結果が得られた。
論文 参考訳(メタデータ) (2024-09-11T17:01:06Z) - Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
本稿では,言語モデルにおける弱強一般化によるモデルアライメントの新たなアプローチを提案する。
このファシリテーションに基づくアプローチは、モデルの性能を高めるだけでなく、モデルアライメントの性質に関する洞察も提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-11T15:16:25Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - An In-depth Survey of Large Language Model-based Artificial Intelligence
Agents [11.774961923192478]
LLMベースのAIエージェントと従来のAIエージェントの主な違いと特徴について検討した。
我々は、計画、記憶、ツール使用を含むAIエージェントの重要なコンポーネントについて、詳細な分析を行った。
論文 参考訳(メタデータ) (2023-09-23T11:25:45Z) - A Framework for Understanding and Visualizing Strategies of RL Agents [0.0]
本稿では,時間論理式を用いてエージェント戦略を特徴付ける逐次決定タスクの理解可能なモデル学習フレームワークを提案する。
我々は,手工芸の専門家政策と訓練された強化学習エージェントの痕跡を用いて,StarCraft II (SC2) の戦闘シナリオに関する枠組みを評価した。
論文 参考訳(メタデータ) (2022-08-17T21:58:19Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。