論文の概要: Empowering Large Language Models with 3D Situation Awareness
- arxiv url: http://arxiv.org/abs/2503.23024v1
- Date: Sat, 29 Mar 2025 09:34:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:36:05.841337
- Title: Empowering Large Language Models with 3D Situation Awareness
- Title(参考訳): 3次元状況認識による大規模言語モデルの構築
- Authors: Zhihao Yuan, Yibo Peng, Jinke Ren, Yinghong Liao, Yatong Han, Chun-Mei Feng, Hengshuang Zhao, Guanbin Li, Shuguang Cui, Zhen Li,
- Abstract要約: 3Dと2Dの主な違いは、3Dシーンにおける自我中心のオブザーバーの状況が変化し、異なる記述をもたらすことである。
本研究では,データ収集時の走査軌道を利用して状況認識データセットを自動的に生成する手法を提案する。
本研究では,観測者の視点の位置と方向を明示的に予測する状況接地モジュールを導入し,LLMが3次元シーンで状況記述をグラウンド化できるようにする。
- 参考スコア(独自算出の注目度): 84.12071023036636
- License:
- Abstract: Driven by the great success of Large Language Models (LLMs) in the 2D image domain, their applications in 3D scene understanding has emerged as a new trend. A key difference between 3D and 2D is that the situation of an egocentric observer in 3D scenes can change, resulting in different descriptions (e.g., ''left" or ''right"). However, current LLM-based methods overlook the egocentric perspective and simply use datasets from a global viewpoint. To address this issue, we propose a novel approach to automatically generate a situation-aware dataset by leveraging the scanning trajectory during data collection and utilizing Vision-Language Models (VLMs) to produce high-quality captions and question-answer pairs. Furthermore, we introduce a situation grounding module to explicitly predict the position and orientation of observer's viewpoint, thereby enabling LLMs to ground situation description in 3D scenes. We evaluate our approach on several benchmarks, demonstrating that our method effectively enhances the 3D situational awareness of LLMs while significantly expanding existing datasets and reducing manual effort.
- Abstract(参考訳): 2次元画像領域におけるLarge Language Models (LLMs) の大きな成功により、3次元シーン理解における彼らの応用は新しいトレンドとして現れた。
3Dと2Dの主な違いは、3Dシーンにおける自我中心のオブザーバーの状況が変化し、異なる記述(eg , ''left' または ''right")をもたらすことである。
しかし、現在のLLMベースのメソッドは、エゴセントリックな視点を軽視し、グローバルな視点からデータセットを使用する。
そこで本研究では,データ収集中の走査軌道を活用し,視覚言語モデル(VLM)を用いて,高品質なキャプションと質問応答ペアを生成することによって,状況認識データセットの自動生成手法を提案する。
さらに,観測者の視点の位置と方向を明示的に予測し,LLMが3次元のシーンで状況記述を下敷きにすることができる状況把握モジュールを導入する。
提案手法は,LLMの3次元状況認識を効果的に向上すると同時に,既存のデータセットを大幅に拡張し,手作業の軽減を図っている。
関連論文リスト
- ZeroKey: Point-Level Reasoning and Zero-Shot 3D Keypoint Detection from Large Language Models [57.57832348655715]
3次元形状のキーポイント検出のための新しいゼロショット手法を提案する。
提案手法は,マルチモーダル大規模言語モデルに埋め込まれた豊富な知識を利用する。
論文 参考訳(メタデータ) (2024-12-09T08:31:57Z) - SeeGround: See and Ground for Zero-Shot Open-Vocabulary 3D Visual Grounding [10.81711535075112]
3Dビジュアルグラウンディングは、テキスト記述に基づいて3Dシーン内のオブジェクトを見つけることを目的としている。
大規模2次元データに基づいて訓練された2次元視覚言語モデル(VLM)を活用したゼロショット3DVGフレームワークであるSeeeGroundを紹介する。
本稿では,クエリ関連画像レンダリングの視点を動的に選択するパースペクティブ適応モジュールと,2次元画像と3次元空間記述を統合するFusion Alignmentモジュールの2つのモジュールを提案する。
論文 参考訳(メタデータ) (2024-12-05T17:58:43Z) - Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding [19.382210260928776]
Video-3D LLMは3Dシーンをダイナミックビデオとして扱い、3D位置エンコーディングをこれらの表現に組み込む。
本モデルは,複数の3次元シーン理解ベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-30T14:28:53Z) - SPARTUN3D: Situated Spatial Understanding of 3D World in Large Language Models [45.28780381341979]
Spartun3Dという,様々な位置空間推論タスクを組み込んだスケーラブルな位置位置3Dデータセットを導入する。
また,Spartun3D-LLMを提案する。これは既存の3次元LLM上に構築されているが,新しい位置空間アライメントモジュールと統合されている。
論文 参考訳(メタデータ) (2024-10-04T19:22:20Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
マルチモーダルな大言語モデル(MLLM)は、一般的な能力では優れているが、3Dタスクでは性能が劣る。
本稿では,3次元局所空間物体認識の弱さ,テキストに基づく幾何学的数値出力の低さ,カメラ焦点変動の処理能力の低下に対する解決策を提案する。
我々は,事前学習したMLLMに対してパラメータ効率の良い微調整を採用し,強力な3次元知覚MLLMであるLLMI3Dを開発した。
論文 参考訳(メタデータ) (2024-08-14T10:00:16Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
本稿では,マルチモーダルな3Dシーンデータセットと階層型言語アノテーションを用いたベンチマーク,MMScanを構築した。
結果として得られたマルチモーダルな3Dデータセットは、109kオブジェクトと7.7kリージョン上の1.4Mメタアノテーション付きキャプションと、3Dビジュアルグラウンドと質問応答ベンチマークのための3.04M以上の多様なサンプルを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T17:59:30Z) - Is a 3D-Tokenized LLM the Key to Reliable Autonomous Driving? [66.6886931183372]
我々は,LDMと1層線形プロジェクタを接続する3Dトークン化器として,DETR方式の3Dパーセプトロンを導入する。
その単純さにもかかわらず、Atlasは3D検出とエゴ計画の両方で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T16:57:44Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
本稿では,3次元オートデコーダをコアとした静的・明瞭な3次元アセットの生成に対して,新しいアプローチを提案する。
3D Autodecoderフレームワークは、ターゲットデータセットから学んだプロパティを潜時空間に埋め込む。
次に、適切な中間体積潜在空間を特定し、ロバストな正規化と非正規化演算を導入する。
論文 参考訳(メタデータ) (2023-07-07T17:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。