MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning
- URL: http://arxiv.org/abs/2503.23042v1
- Date: Sat, 29 Mar 2025 11:14:02 GMT
- Title: MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning
- Authors: M Rita Verdelho, Alexandre Bernardino, Catarina Barata,
- Abstract summary: We compare various strategies for predicting survival at the WSI and patient level.<n>The former treats each WSI as an independent sample, mimicking the strategy adopted in other works.<n>The latter comprises methods to either aggregate the predictions of the several WSIs or automatically identify the most relevant slide.
- Score: 52.231128973251124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Oncologists often rely on a multitude of data, including whole-slide images (WSIs), to guide therapeutic decisions, aiming for the best patient outcome. However, predicting the prognosis of cancer patients can be a challenging task due to tumor heterogeneity and intra-patient variability, and the complexity of analyzing WSIs. These images are extremely large, containing billions of pixels, making direct processing computationally expensive and requiring specialized methods to extract relevant information. Additionally, multiple WSIs from the same patient may capture different tumor regions, some being more informative than others. This raises a fundamental question: Should we use all WSIs to characterize the patient, or should we identify the most representative slide for prognosis? Our work seeks to answer this question by performing a comparison of various strategies for predicting survival at the WSI and patient level. The former treats each WSI as an independent sample, mimicking the strategy adopted in other works, while the latter comprises methods to either aggregate the predictions of the several WSIs or automatically identify the most relevant slide using multiple-instance learning (MIL). Additionally, we evaluate different Graph Neural Networks architectures under these strategies. We conduct our experiments using the MMIST-ccRCC dataset, which comprises patients with clear cell renal cell carcinoma (ccRCC). Our results show that MIL-based selection improves accuracy, suggesting that choosing the most representative slide benefits survival prediction.
Related papers
- Embedding-based Multimodal Learning on Pan-Squamous Cell Carcinomas for Improved Survival Outcomes [0.0]
PARADIGM is a framework that learns from multimodal, heterogeneous datasets to improve clinical outcome prediction.
We train GNNs on pan-Squamous Cell Carcinomas and validate our approach on Moffitt Cancer Center lung SCC data.
Our solution aims to understand the patient's circumstances comprehensively, offering insights on heterogeneous data integration and the benefits of converging maximum data views.
arXiv Detail & Related papers (2024-06-11T22:19:14Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - TMSS: An End-to-End Transformer-based Multimodal Network for
Segmentation and Survival Prediction [0.0]
oncologists do not do this in their analysis but rather fuse the information in their brain from multiple sources such as medical images and patient history.
This work proposes a deep learning method that mimics oncologists' analytical behavior when quantifying cancer and estimating patient survival.
arXiv Detail & Related papers (2022-09-12T06:22:05Z) - Colorectal cancer survival prediction using deep distribution based
multiple-instance learning [5.231498575799198]
We develop a distribution based multiple-instance survival learning algorithm (DeepDisMISL)
Our results suggest that the more information about the distribution of the patch scores for a WSI, the better is the prediction performance.
DeepDisMISL demonstrated superior predictive ability compared to other recently published, state-of-the-art algorithms.
arXiv Detail & Related papers (2022-04-24T14:55:57Z) - Multi-task fusion for improving mammography screening data
classification [3.7683182861690843]
We propose a pipeline approach, where we first train a set of individual, task-specific models.
We then investigate the fusion thereof, which is in contrast to the standard model ensembling strategy.
Our fusion approaches improve AUC scores significantly by up to 0.04 compared to standard model ensembling.
arXiv Detail & Related papers (2021-12-01T13:56:27Z) - MHAttnSurv: Multi-Head Attention for Survival Prediction Using
Whole-Slide Pathology Images [4.148207298604488]
We developed a multi-head attention approach to focus on various parts of a tumor slide, for more comprehensive information extraction from WSIs.
Our model achieved an average c-index of 0.640, outperforming two existing state-of-the-art approaches for WSI-based survival prediction.
arXiv Detail & Related papers (2021-10-22T02:18:27Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
Multi-voxel pattern analysis (MVPA) learns predictive models from task-based functional magnetic resonance imaging (fMRI) data.
MVPA works best with a well-designed feature set and an adequate sample size.
Most fMRI datasets are noisy, high-dimensional, expensive to collect, and with small sample sizes.
This paper proposes the Shared Space Transfer Learning (SSTL) as a novel transfer learning approach.
arXiv Detail & Related papers (2020-10-24T08:50:26Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.