論文の概要: TRACE: Intra-visit Clinical Event Nowcasting via Effective Patient Trajectory Encoding
- arxiv url: http://arxiv.org/abs/2503.23072v1
- Date: Sat, 29 Mar 2025 13:08:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:34:19.717494
- Title: TRACE: Intra-visit Clinical Event Nowcasting via Effective Patient Trajectory Encoding
- Title(参考訳): TRACE: 効果的な患者軌跡エンコーディングによる視内臨床イベントの紹介
- Authors: Yuyang Liang, Yankai Chen, Yixiang Fang, Laks V. S. Lakshmanan, Chenhao Ma,
- Abstract要約: 病院訪問における検査室計測予測の課題について紹介する。
本稿では,患者軌跡の符号化による臨床イベント放送のためのトランスフォーマーベースモデルTRACEを提案する。
- 参考スコア(独自算出の注目度): 19.271785873593775
- License:
- Abstract: Electronic Health Records (EHR) have become a valuable resource for a wide range of predictive tasks in healthcare. However, existing approaches have largely focused on inter-visit event predictions, overlooking the importance of intra-visit nowcasting, which provides prompt clinical insights during an ongoing patient visit. To address this gap, we introduce the task of laboratory measurement prediction within a hospital visit. We study the laboratory data that, however, remained underexplored in previous work. We propose TRACE, a Transformer-based model designed for clinical event nowcasting by encoding patient trajectories. TRACE effectively handles long sequences and captures temporal dependencies through a novel timestamp embedding that integrates decay properties and periodic patterns of data. Additionally, we introduce a smoothed mask for denoising, improving the robustness of the model. Experiments on two large-scale electronic health record datasets demonstrate that the proposed model significantly outperforms previous methods, highlighting its potential for improving patient care through more accurate laboratory measurement nowcasting. The code is available at https://github.com/Amehi/TRACE.
- Abstract(参考訳): 電子健康記録(Electronic Health Records, EHR)は、医療における幅広い予測タスクのための貴重なリソースとなっている。
しかし、既存のアプローチは、現在進行中の患者訪問中にすぐに臨床的な洞察を提供する、視線内放送の重要性を見越して、視線間事象予測に重点を置いている。
このギャップに対処するため,病院訪問における実験室計測予測の課題を紹介した。
しかし, これまでの研究で未調査であった実験室データについて検討した。
本稿では,患者軌跡の符号化による臨床イベント放送のためのトランスフォーマーベースモデルTRACEを提案する。
TRACEは、長いシーケンスを効果的に処理し、データの減衰特性と周期パターンを統合する新しいタイムスタンプ埋め込みを通じて、時間的依存関係をキャプチャする。
さらに,モデルの頑健性を向上させるためにスムーズなマスクを導入する。
2つの大規模電子健康記録データセットの実験では、提案手法が従来の方法よりも大幅に優れており、より正確な実験室計測による患者のケア改善の可能性を強調している。
コードはhttps://github.com/Amehi/TRACEで公開されている。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
そこで我々は,未計画の病院入退院を予測するための,新しい,解釈可能な深層学習フレームワークを提案する。
実際のデータを用いて,30日と180日以内に病院入退院の2つの予測課題について,本システムの有効性を検証した。
論文 参考訳(メタデータ) (2023-10-16T08:48:52Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
本研究では,ERHにおける不規則な時系列に対処するため,COPERと呼ばれる新規患者状態パーセンシバーモデルを提案する。
ニューラル常微分方程式(ODE)は、COPERが通常の時系列を生成してPerceiverモデルに供給するのに役立ちます。
提案モデルの性能評価には,MIMIC-IIIデータセット上での院内死亡予測タスクを用いる。
論文 参考訳(メタデータ) (2022-08-05T14:32:57Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
異種臨床データを扱うグラフ変換器を用いたネットワークを提案する。
自己教師型, 移動学習環境において, 事前学習方式の利点を示す。
論文 参考訳(メタデータ) (2022-07-21T16:59:09Z) - Sequential Diagnosis Prediction with Transformer and Ontological
Representation [35.88195694025553]
本稿では,患者が訪問する時間スタンプと滞在時間との間に不規則な間隔を対応させるSETORと呼ばれる,エンドツーエンドの頑健なトランスフォーマーモデルを提案する。
2つの実世界の医療データセットで実施された実験により、シーケンシャルな診断予測モデルSETORは、従来の最先端のアプローチよりも優れた予測結果が得られることが示された。
論文 参考訳(メタデータ) (2021-09-07T13:09:55Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - MedGPT: Medical Concept Prediction from Clinical Narratives [0.23488056916440858]
患者の医療履歴の時間的モデリングは、将来の出来事を予測するのに使用できる。
名前付きエンティティ認識とリンクツールを用いたトランスフォーマーベースのパイプラインであるMedGPTを提案する。
本モデルでは, 医療用多選択肢質問応答タスクを用いて, 医療知識を抽出し, 評価を行った。
論文 参考訳(メタデータ) (2021-07-07T10:36:28Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
本稿では,情報フローを組み込んだハイパーボリック埋め込み手法を提案する。
我々は、これらの事前学習された表現をグラフニューラルネットワークに組み込んで、疾患の合併症を検出する。
本稿では,EHRデータを完全に活用する自己教師付き学習フレームワークに,階層型で強化された履歴予測代行タスクを提案する。
論文 参考訳(メタデータ) (2021-06-09T00:42:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。