論文の概要: A GAN-Enhanced Deep Learning Framework for Rooftop Detection from Historical Aerial Imagery
- arxiv url: http://arxiv.org/abs/2503.23200v1
- Date: Sat, 29 Mar 2025 19:51:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:35:55.959957
- Title: A GAN-Enhanced Deep Learning Framework for Rooftop Detection from Historical Aerial Imagery
- Title(参考訳): 歴史的航空画像からの屋上検出のためのGAN強化ディープラーニングフレームワーク
- Authors: Pengyu Chen, Sicheng Wang, Cuizhen Wang, Senrong Wang, Beiao Huang, Lu Huang, Zhe Zang,
- Abstract要約: 本研究では,GAN(Geneversarative Adversarial Networks)に基づく2段階画像強調パイプラインを提案する。
改良された画像は、Faster R-CNN、DETReg、YOLOv11nなど、屋上検出モデルの訓練と評価に使用された。
その結果, カラー化と超高分解能を組み合わせることで検出性能が大幅に向上し, 平均平均精度 (mAP) は85%を超えた。
- 参考スコア(独自算出の注目度): 7.202360444511468
- License:
- Abstract: Accurate rooftop detection from historical aerial imagery is vital for examining long-term urban development and human settlement patterns. However, black-and-white analog photographs pose significant challenges for modern object detection frameworks due to their limited spatial resolution, lack of color information, and archival degradation. To address these limitations, this study introduces a two-stage image enhancement pipeline based on Generative Adversarial Networks (GANs): image colorization using DeOldify, followed by super-resolution enhancement with Real-ESRGAN. The enhanced images were then used to train and evaluate rooftop detection models, including Faster R-CNN, DETReg, and YOLOv11n. Results show that combining colorization with super-resolution substantially improves detection performance, with YOLOv11n achieving a mean Average Precision (mAP) exceeding 85%. This reflects an improvement of approximately 40% over original black-and-white images and 20% over images enhanced through colorization alone. The proposed method effectively bridges the gap between archival imagery and contemporary deep learning techniques, enabling more reliable extraction of building footprints from historical aerial photographs.
- Abstract(参考訳): 歴史的航空画像からの正確な屋上検出は、長期的な都市開発と人的居住パターンを調べる上で不可欠である。
しかし、白黒のアナログ写真は、空間分解能の制限、色情報の欠如、考古学的劣化などにより、現代の物体検出フレームワークに重大な課題をもたらす。
これらの制約に対処するため, GAN(Generative Adversarial Networks)に基づく2段階画像強調パイプラインを導入し, DeOldifyを用いた画像カラー化とReal-ESRGANによる超高解像度化を提案する。
改良された画像は、Faster R-CNN、DETReg、YOLOv11nなど、屋上検出モデルの訓練と評価に使用された。
その結果, カラー化と超高分解能を組み合わせることで検出性能が著しく向上し, 平均平均精度 (mAP) は85%を超えた。
これは、オリジナルの白黒画像よりも約40%改善され、彩色だけで強化された画像より20%改善されたことを反映している。
提案手法は, 歴史的航空写真からの建物足跡のより信頼性の高い抽出を可能にするため, アーカイブ画像と現代の深層学習技術とのギャップを効果的に橋渡しする。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Deep chroma compression of tone-mapped images [46.07829363710451]
本稿では,HDRトーンマップ画像の高速かつ信頼性の高いクロマ圧縮のための生成逆ネットワークを提案する。
提案手法は,色精度において,最先端の画像生成および拡張ネットワークよりも優れることを示す。
このモデルはリアルタイムのパフォーマンスを実現し,計算資源が限られているデバイスに展開する上で有望な結果を示す。
論文 参考訳(メタデータ) (2024-09-24T12:31:55Z) - SAR to Optical Image Translation with Color Supervised Diffusion Model [5.234109158596138]
本稿では,SAR画像をより分かりやすい光学画像に変換するために,革新的な生成モデルを提案する。
サンプリングプロセスでは,SARイメージを条件付きガイドとして使用し,カラーシフト問題に対処するために色管理を統合する。
論文 参考訳(メタデータ) (2024-07-24T01:11:28Z) - Diff-Mosaic: Augmenting Realistic Representations in Infrared Small Target Detection via Diffusion Prior [63.64088590653005]
本稿では拡散モデルに基づくデータ拡張手法であるDiff-Mosaicを提案する。
我々は,モザイク画像を高度に調整し,リアルな画像を生成するPixel-Priorという拡張ネットワークを導入する。
第2段階では,Diff-Prior という画像強調戦略を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:23:05Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow
Removal [74.86415440438051]
画像と劣化先行情報を統合した統合拡散フレームワークを提案する。
SRDデータセット上でのPSNRは31.69dBから34.73dBへと大幅に向上した。
論文 参考訳(メタデータ) (2022-12-09T07:48:30Z) - Contrastive Weighted Learning for Near-Infrared Gaze Estimation [0.228438857884398]
コントラスト学習を用いた近赤外画像による視線推定のための新しいフレームワークであるGazeCWLを提案する。
我々のモデルは、赤外線画像に基づく視線推定において、以前の領域一般化モデルよりも優れている。
論文 参考訳(メタデータ) (2022-11-06T10:03:23Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
我々は,RGB-Dの高次物体検出のための効率的かつコンパクトなディープネットワークを開発することを目指している。
そこで本研究では,改良のための改良ネットワークを提案する。
我々のモデルは、既存の最先端のアプローチよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-08-17T02:55:06Z) - Cascade Graph Neural Networks for RGB-D Salient Object Detection [41.57218490671026]
色情報と深度情報の両方を用いて,RGB-D画像に対する正当性物体検出(SOD)の問題点を考察する。
この2つのデータソース間の相互利益を総合的に蒸留し推論できる統合フレームワークであるCascade Graph Neural Networks(Cas-Gnn)を紹介する。
Cas-Gnnは、いくつかの広く使用されているベンチマークにおいて、既存のRGB-DSODアプローチよりも大幅にパフォーマンスが向上している。
論文 参考訳(メタデータ) (2020-08-07T10:59:04Z) - The color out of space: learning self-supervised representations for
Earth Observation imagery [10.019106184219515]
衛星画像から有意義な表現を学習し、その高次元スペクトル帯域を利用して可視色を再構成する。
我々は,土地被覆分類(BigEarthNet)と西ナイルウイルス検出(West Nile Virus detection)について実験を行い,着色が特徴抽出器を訓練するための確固とした前提条件であることを示した。
論文 参考訳(メタデータ) (2020-06-22T10:21:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。