Quantum Simulations of Fundamental Physics
- URL: http://arxiv.org/abs/2503.23233v1
- Date: Sat, 29 Mar 2025 21:53:04 GMT
- Title: Quantum Simulations of Fundamental Physics
- Authors: Martin J. Savage,
- Abstract summary: I discuss highlights, opportunities and the challenges that lie ahead.<n>Remarkable advances in quantum information science and technology are profoundly changing how we understand and explore fundamental quantum many-body systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Simulating the dynamics of non-equilibrium matter under extreme conditions lies beyond the capabilities of classical computation alone. Remarkable advances in quantum information science and technology are profoundly changing how we understand and explore fundamental quantum many-body systems, and have brought us to the point of simulating essential aspects of these systems using quantum computers. I discuss highlights, opportunities and the challenges that lie ahead.
Related papers
- Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium [0.0]
We review the basic concepts of superconducting quantum simulation and their recent experimental progress.
We discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.
arXiv Detail & Related papers (2024-10-16T08:27:01Z) - Quantum Simulating Nature's Fundamental Fields [0.0]
We discuss the emerging area of quantum simulations of Standard-Model physics.
We discuss challenges that lie ahead, and opportunities for progress in the context of nuclear and high-energy physics.
arXiv Detail & Related papers (2024-04-09T13:25:41Z) - To Study the Effect of Boundary Conditions and Disorder in Spin Chain
Systems Using Quantum Computers [0.0]
We focus on the simulation of Anderson localization in the Heisenberg spin chain systems.
We explore the effects of disorder on closed and open chain systems using quantum computers.
arXiv Detail & Related papers (2023-07-29T19:21:03Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Variational Quantum Simulations of Finite-Temperature Dynamical
Properties via Thermofield Dynamics [19.738342279357845]
We present a variational quantum simulation protocol based on the thermofield dynamics formalism.
Our approach is capable of simulating non-equilibrium phenomena which have not been previously explored with quantum computers.
arXiv Detail & Related papers (2022-06-11T17:22:55Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Digital Quantum Simulation of Non-Equilibrium Quantum Many-Body Systems [0.0]
Digital quantum simulation uses the capabilities of quantum computers to determine the dynamics of quantum systems.
Here we use the IBM quantum computers to simulate the non-equilibrium dynamics of few spin and fermionic systems.
arXiv Detail & Related papers (2020-09-15T22:29:04Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.