Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium
- URL: http://arxiv.org/abs/2410.12363v1
- Date: Wed, 16 Oct 2024 08:27:01 GMT
- Title: Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium
- Authors: Yunyan Yao, Liang Xiang,
- Abstract summary: We review the basic concepts of superconducting quantum simulation and their recent experimental progress.
We discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.
- Score: 0.0
- License:
- Abstract: Quantum computing is an exciting field that uses quantum principles, such as quantum superposition and entanglement, to tackle complex computational problems. Superconducting quantum circuits, based on Josephson junctions, is one of the most promising physical realizations to achieve the long-term goal of building fault-tolerant quantum computers. The past decade has witnessed the rapid development of this field, where many intermediate-scale multi-qubit experiments emergedtosimulatenonequilibriumquantummany-bodydynamicsthatarechallenging for classical computers. Here, we review the basic concepts of superconducting quantum simulation and their recent experimental progress in exploring exotic nonequilibrium quantum phenomena emerging in strongly interacting many-body systems, e.g., many-body localization, quantum many body scars, and discrete time crystals. We further discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.
Related papers
- Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium [0.0]
We study the long-lived quantum correlations and nonclassical states generated in the anisotropic Rabi model.
We demonstrate a stark distinction between virtual excitations produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction has been switched off.
arXiv Detail & Related papers (2023-09-05T10:59:32Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Ab initio Quantum Simulation of Strongly Correlated Materials with
Quantum Embedding [0.5872014229110214]
ab initio simulation of solid-state materials on quantum computers is still in its early stage.
We introduce an orbital-based multi-fragment approach on top of the periodic density matrix embedding theory.
Our results suggest that quantum embedding combined with a chemically intuitive fragmentation can greatly advance quantum simulation of realistic materials.
arXiv Detail & Related papers (2022-09-07T15:02:01Z) - The Coming Decades of Quantum Simulation [0.0]
We focus on various shades of quantum simulation (Noisy Intermediate Scale Quantum, NISQ) devices, analogue and digital quantum simulators and quantum annealers.
There is a clear need and quest for such systems that, without necessarily simulating quantum dynamics of some physical systems, can generate massive, controllable, robust, entangled, and superposition states.
This will, in particular, allow the control of decoherence, enabling the use of these states for quantum communications.
arXiv Detail & Related papers (2022-04-19T14:02:32Z) - The Basics of Quantum Computing for Chemists [0.0]
We review and illustrate the basic aspects of quantum information and their relation to quantum computing.
We discuss the current landscape when of relevance to quantum chemical simulations in quantum computers.
arXiv Detail & Related papers (2022-03-28T20:10:00Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Digital Quantum Simulation of Non-Equilibrium Quantum Many-Body Systems [0.0]
Digital quantum simulation uses the capabilities of quantum computers to determine the dynamics of quantum systems.
Here we use the IBM quantum computers to simulate the non-equilibrium dynamics of few spin and fermionic systems.
arXiv Detail & Related papers (2020-09-15T22:29:04Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.