論文の概要: Localized Graph-Based Neural Dynamics Models for Terrain Manipulation
- arxiv url: http://arxiv.org/abs/2503.23270v1
- Date: Sun, 30 Mar 2025 01:24:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.025475
- Title: Localized Graph-Based Neural Dynamics Models for Terrain Manipulation
- Title(参考訳): 地形操作のための局所グラフベースニューラルダイナミクスモデル
- Authors: Chaoqi Liu, Yunzhu Li, Kris Hauser,
- Abstract要約: 本稿では,地形力学モデリングと操作のための学習に基づくアプローチを提案する。
我々は、グラフベースのニューラルダイナミクスフレームワークを利用して、粒子のグラフの運動として地形の変形を表現する。
- 参考スコア(独自算出の注目度): 29.578534072345835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive models can be particularly helpful for robots to effectively manipulate terrains in construction sites and extraterrestrial surfaces. However, terrain state representations become extremely high-dimensional especially to capture fine-resolution details and when depth is unknown or unbounded. This paper introduces a learning-based approach for terrain dynamics modeling and manipulation, leveraging the Graph-based Neural Dynamics (GBND) framework to represent terrain deformation as motion of a graph of particles. Based on the principle that the moving portion of a terrain is usually localized, our approach builds a large terrain graph (potentially millions of particles) but only identifies a very small active subgraph (hundreds of particles) for predicting the outcomes of robot-terrain interaction. To minimize the size of the active subgraph we introduce a learning-based approach that identifies a small region of interest (RoI) based on the robot's control inputs and the current scene. We also introduce a novel domain boundary feature encoding that allows GBNDs to perform accurate dynamics prediction in the RoI interior while avoiding particle penetration through RoI boundaries. Our proposed method is both orders of magnitude faster than naive GBND and it achieves better overall prediction accuracy. We further evaluated our framework on excavation and shaping tasks on terrain with different granularity.
- Abstract(参考訳): 予測モデルは、建設現場や地球外表面の地形を効果的に操作するロボットにとって特に有用である。
しかし、地形状態の表現は非常に高次元になり、特に細部の詳細を捉え、深さが未知あるいは未境界である場合を捉えている。
本稿では、グラフベースのニューラルダイナミクス(GBND)フレームワークを利用して、地形の変形を粒子のグラフの運動として表現する。
通常、地形の移動部が局所化されているという原理に基づいて、我々の手法は大きな地形グラフ(潜在的に数百万の粒子)を構築するが、ロボットとテランの相互作用の結果を予測するための非常に小さな活動部分グラフ(数百の粒子)しか特定できない。
アクティブサブグラフのサイズを最小化するために,ロボットの制御入力と現在のシーンに基づいて,関心領域(RoI)を識別する学習ベースアプローチを導入する。
また,新しい領域境界符号を導入し,GBNDがロI内部で正確なダイナミクス予測を行えるようにし,ロI内部への粒子侵入を回避した。
提案手法は,GBNDよりも桁違いに高速であり,全体的な予測精度が向上する。
さらに,粒度の異なる地形における掘削・造形作業の枠組みについて検討した。
関連論文リスト
- Watch Your STEPP: Semantic Traversability Estimation using Pose Projected Features [4.392942391043664]
人間の歩行のデモンストレーションから学ぶことにより,地形の移動性を評価する手法を提案する。
提案手法は,DINOv2視覚変換器モデルを用いて生成した高密度画素ワイドな特徴埋め込みを利用する。
損失を最小化することにより、ネットワークは、低い復元誤差で見慣れた地形と、高い復元誤差で見慣れないまたは危険な地形とを区別する。
論文 参考訳(メタデータ) (2025-01-29T11:53:58Z) - ImplicitTerrain: a Continuous Surface Model for Terrain Data Analysis [14.013976303831313]
ImplicitTerrainは、高解像度の地形を連続的に微分的にモデル化するための暗黙の神経表現(INR)アプローチである。
本実験では, 表面適合精度, 有効トポロジカル特徴抽出, 各種トポロジカル特徴抽出について検討した。
論文 参考訳(メタデータ) (2024-05-31T23:05:34Z) - TK-Planes: Tiered K-Planes with High Dimensional Feature Vectors for Dynamic UAV-based Scenes [58.180556221044235]
本研究では,無人航空機(UAV)の認識における合成データと実世界データとの領域ギャップを埋める新しい手法を提案する。
私たちの定式化は、小さな動く物体や人間の行動からなる動的なシーンのために設計されています。
我々は,Okutama ActionやUG2など,挑戦的なデータセットの性能を評価する。
論文 参考訳(メタデータ) (2024-05-04T21:55:33Z) - Terrain Diffusion Network: Climatic-Aware Terrain Generation with
Geological Sketch Guidance [16.29267504093274]
スケッチベースの地形生成は、コンピュータゲーム、アニメーション、バーチャルリアリティーなどの様々なアプリケーションにおいて、仮想環境のための現実的な風景を作成しようとしている。
本稿では,制御性向上のためのユーザガイダンスを積極的に取り入れた,新しい拡散に基づく地形拡散ネットワーク(TDN)を提案する。
3つの地形合成装置は、構造的、中間的、きめ細やかなレベル認知のために設計されており、それぞれの合成装置は異なる地形の側面に集中することができる。
論文 参考訳(メタデータ) (2023-08-31T13:41:34Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
マルチタスク学習に基づく新しいDynSGGモデルDynSGG-MTLを提案する。
長期的人間の行動は、大域的な制約に適合する複数のシーングラフを生成するためにモデルを監督し、尾の述語を学べないモデルを避ける。
論文 参考訳(メタデータ) (2023-08-10T01:24:25Z) - NEWTON: Neural View-Centric Mapping for On-the-Fly Large-Scale SLAM [51.21564182169607]
Newtonは、リアルタイム観測に基づいて動的にニューラルネットワークを構築するビュー中心のマッピング手法である。
本手法は,複数のニューラルネットワークを用いてシーンを表現することで,ループクロージャとシーン境界更新を用いたカメラポーズ更新を可能にする。
実験の結果,既存の世界中心型ニューラルネットワークSLAMシステムよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-03-23T20:22:01Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDARの生成した占有グリッドマップ(L-OGM)は、頑丈な鳥の視線シーンを表現している。
本稿では,学習空間内での表現学習と予測という,占有率予測を分離する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-03T22:04:00Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
本稿では,暗黙的オブジェクトエンコーダ,ニューラルレージアンスフィールド(NeRF),グラフニューラルネットワークに基づく画像観測から構成予測モデルを学習する手法を提案する。
NeRFは3D以前の強みから、シーンを表現するための一般的な選択肢となっている。
提案手法では,学習した潜時空間にRTを応用し,そのモデルと暗黙のオブジェクトエンコーダを用いて潜時空間を情報的かつ効率的にサンプリングする。
論文 参考訳(メタデータ) (2022-02-24T01:31:29Z) - Deep Generative Framework for Interactive 3D Terrain Authoring and
Manipulation [4.202216894379241]
本稿では,VAEと生成条件GANモデルを組み合わせた新しいランドスケープオーサリングフレームワークを提案する。
我々のフレームワークは実世界の地形データセットから潜在空間を学習することで既存の手法の限界を克服しようとする例に基づく手法である。
我々はまた、ユーザが最小限の入力で多様な地形を生成できるインタラクティブツールを開発した。
論文 参考訳(メタデータ) (2022-01-07T08:58:01Z) - Solving Occlusion in Terrain Mapping with Neural Networks [7.703348666813963]
本研究では,実世界のデータに基づいて,地上情報を必要としない自己教師付き学習手法を提案する。
私たちのニューラルネットワークは、自律的な地上ロボットに適したサンプリングレートで、CPUとGPUの両方でリアルタイムで実行できます。
論文 参考訳(メタデータ) (2021-09-15T08:30:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。