論文の概要: Extracting Patient History from Clinical Text: A Comparative Study of Clinical Large Language Models
- arxiv url: http://arxiv.org/abs/2503.23281v1
- Date: Sun, 30 Mar 2025 02:00:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.032147
- Title: Extracting Patient History from Clinical Text: A Comparative Study of Clinical Large Language Models
- Title(参考訳): 臨床テキストから患者履歴を抽出する:臨床大言語モデルの比較研究
- Authors: Hieu Nghiem, Tuan-Dung Le, Suhao Chen, Thanh Thieu, Andrew Gin, Ellie Phuong Nguyen, Dursun Delen, Johnson Thomas, Jivan Lamichhane, Zhuqi Miao,
- Abstract要約: 本研究は,臨床大言語モデル(cLLMs)の医療史エンティティ(MHEs)認識における性能評価である。
MTSamplesレポジトリから61例の外来臨床ノートに1,449例の診断を行った。
cLLMsはMHEの抽出に要する時間を20%以上短縮する可能性を示した。
- 参考スコア(独自算出の注目度): 3.1277841304339065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting medical history entities (MHEs) related to a patient's chief complaint (CC), history of present illness (HPI), and past, family, and social history (PFSH) helps structure free-text clinical notes into standardized EHRs, streamlining downstream tasks like continuity of care, medical coding, and quality metrics. Fine-tuned clinical large language models (cLLMs) can assist in this process while ensuring the protection of sensitive data via on-premises deployment. This study evaluates the performance of cLLMs in recognizing CC/HPI/PFSH-related MHEs and examines how note characteristics impact model accuracy. We annotated 1,449 MHEs across 61 outpatient-related clinical notes from the MTSamples repository. To recognize these entities, we fine-tuned seven state-of-the-art cLLMs. Additionally, we assessed the models' performance when enhanced by integrating, problems, tests, treatments, and other basic medical entities (BMEs). We compared the performance of these models against GPT-4o in a zero-shot setting. To further understand the textual characteristics affecting model accuracy, we conducted an error analysis focused on note length, entity length, and segmentation. The cLLMs showed potential in reducing the time required for extracting MHEs by over 20%. However, detecting many types of MHEs remained challenging due to their polysemous nature and the frequent involvement of non-medical vocabulary. Fine-tuned GatorTron and GatorTronS, two of the most extensively trained cLLMs, demonstrated the highest performance. Integrating pre-identified BME information improved model performance for certain entities. Regarding the impact of textual characteristics on model performance, we found that longer entities were harder to identify, note length did not correlate with a higher error rate, and well-organized segments with headings are beneficial for the extraction.
- Abstract(参考訳): 患者の主訴(CC)、現在の病歴(HPI)、過去、家族、社会史(PFSH)に関連する医療史エンティティ(MHE)の抽出は、フリーテキストの臨床ノートを標準化されたEHRに構造化し、ケアの継続性、医療コーディング、品質メトリクスといった下流のタスクを合理化するのに役立ちます。
微調整された臨床大言語モデル(cLLM)は、オンプレミスのデプロイメントを通じて機密データの保護を確保しながら、このプロセスを支援することができる。
本研究では,CC/HPI/PFSH関連MHEの認識におけるcLLMsの性能評価を行い,音符特性がモデル精度に与える影響について検討した。
MTSamplesレポジトリから61例の外来臨床ノートに1,449例の診断を行った。
これらの実体を認識するため、7つの最先端のcLLMを微調整した。
さらに,統合,問題,検査,治療,その他の基礎的医療機関(BMEs)によるモデルの性能評価を行った。
ゼロショット設定でこれらのモデルの性能をGPT-4oと比較した。
モデル精度に影響を与えるテキストの特徴をより深く理解するために,音符長,実体長,セグメンテーションに着目した誤り解析を行った。
cLLMsはMHEの抽出に要する時間を20%以上短縮する可能性を示した。
しかし,その多文性や非医学的語彙の頻繁な関与により,多くの種類のMHEの検出は困難であった。
最も広範囲に訓練されたcLLMのうち、GatorTronとGatorTronSは最高性能を示した。
事前識別されたBME情報の統合により、特定のエンティティのモデル性能が改善された。
テキスト特性がモデル性能に与える影響については,長いエンティティの識別が困難であること,ノート長がより高いエラー率と相関しないこと,見出し付きセグメントが有効であること,などが判明した。
関連論文リスト
- HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
本稿では,放射線学レポート生成のための歴史制約付き大規模言語モデル (HC-LLM) フレームワークを提案する。
胸部X線写真から経時的特徴と経時的特徴を抽出し,疾患の進行を捉える診断報告を行った。
特に,本手法は,テスト中の履歴データなしでも良好に動作し,他のマルチモーダル大規模モデルにも容易に適用可能である。
論文 参考訳(メタデータ) (2024-12-15T06:04:16Z) - Is larger always better? Evaluating and prompting large language models for non-generative medical tasks [11.799956298563844]
本研究は、GPTベースのLCM、BERTベースのモデル、従来の臨床予測モデルなど、さまざまなモデルをベンチマークする。
我々は,寛容と予測,疾患階層再構築,生物医学的文章マッチングといった課題に焦点をあてた。
その結果, LLMは, 適切に設計されたプロンプト戦略を用いて, 構造化EHRデータに対して頑健なゼロショット予測能力を示した。
構造化されていない医療用テキストでは、LLMは細調整されたBERTモデルよりも優れておらず、教師なしタスクと教師なしタスクの両方に優れていた。
論文 参考訳(メタデータ) (2024-07-26T06:09:10Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
大規模言語モデルは、一般的な医学的知識をエンコードする能力において有望な結果を示している。
内科的知識を活用しててててんかんの診断を行う技術について検討した。
論文 参考訳(メタデータ) (2024-07-03T11:02:12Z) - Autocompletion of Chief Complaints in the Electronic Health Records
using Large Language Models [0.3749861135832072]
テキスト生成技術を用いて,CCデータを用いた機械学習モデルを構築する。
我々は, GPT-4のOpenAI APIを利用して, CC文を組み込むことで, プロンプトを調整した。
モデルの性能は、パープレキシティスコア、修正BERTSスコア、コサイン類似度スコアに基づいて評価する。
論文 参考訳(メタデータ) (2024-01-11T18:06:30Z) - CORAL: Expert-Curated medical Oncology Reports to Advance Language Model
Inference [2.1067045507411195]
大規模言語モデル(LLM)は、最近、様々な医学自然言語処理タスクにおいて印象的なパフォーマンスを示した。
そこで我々は, 患者の特徴, 腫瘍の特徴, 検査, 治療, 時間性などを含む, テキストオンコロジー情報に注釈を付けるための詳細なスキーマを開発した。
GPT-4モデルでは、BLEUスコアが平均0.73、ROUGEスコアが平均0.72、F1スコアが0.51、複雑なタスクが平均68%であった。
論文 参考訳(メタデータ) (2023-08-07T18:03:10Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
臨床テキストマイニングにおけるOpenAIのChatGPTの可能性を検討する。
本稿では,高品質な合成データを大量に生成する新たな学習パラダイムを提案する。
提案手法により,下流タスクの性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-03-08T03:56:31Z) - A Marker-based Neural Network System for Extracting Social Determinants
of Health [12.6970199179668]
健康の社会的決定因子(SDoH)は、患者の医療の質と格差を左右する。
多くのSDoHアイテムは、電子健康記録の構造化形式でコード化されていない。
我々は,臨床ノートから自動的にSDoH情報を抽出する,名前付きエンティティ認識(NER),関係分類(RC),テキスト分類手法を含む多段階パイプラインを探索する。
論文 参考訳(メタデータ) (2022-12-24T18:40:23Z) - MedDistant19: A Challenging Benchmark for Distantly Supervised
Biomedical Relation Extraction [19.046156065686308]
遠隔監視は、注釈付きデータの不足に対処するために一般的に使用される。
バイオDSREモデルは、いくつかのベンチマークで非常に正確な結果が得られるように見える。
しかし,タスクの難易度を考慮し,このような印象的な結果の有効性について検討した。
論文 参考訳(メタデータ) (2022-04-10T22:07:25Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。